全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

RTS Noise and Dark Current White Defects Reduction Using Selective Averaging Based on a Multi-Aperture System

DOI: 10.3390/s140101528

Keywords: noise reduction, multi-aperture, random telegraph signal (RTS) noise, dark current white defect

Full-Text   Cite this paper   Add to My Lib

Abstract:

In extremely low-light conditions, random telegraph signal (RTS) noise and dark current white defects become visible. In this paper, a multi-aperture imaging system and selective averaging method which removes the RTS noise and the dark current white defects by minimizing the synthetic sensor noise at every pixel is proposed. In the multi-aperture imaging system, a very small synthetic F-number which is much smaller than 1.0 is achieved by increasing optical gain with multiple lenses. It is verified by simulation that the effective noise normalized by optical gain in the peak of noise histogram is reduced from 1.38e? to 0.48 e? in a 3 × 3-aperture system using low-noise CMOS image sensors based on folding-integration and cyclic column ADCs. In the experiment, a prototype 3 × 3-aperture camera, where each aperture has 200 × 200 pixels and an imaging lens with a focal length of 3.0 mm and F-number of 3.0, is developed. Under a low-light condition, in which the maximum average signal is 11e? per aperture, the RTS and dark current white defects are removed and the peak signal-to-noise ratio (PSNR) of the image is increased by 6.3 dB.

References

[1]  Fossum, E.R. Active pixel sensors: Are CCD's dinosaurs. Proc. SPIE Charge Coupled Devices Solid State Opt. Sens. III 1993, 1900, 2–14.
[2]  Lee, P.P.K.; Gee, R.C.; Guidash, R.M.; Lee, T-H.; Fossum, E.R. An Active Pixel Sensor Fabricated Using CMOS/CCD Process Technology. Proceedings of the IEEE Workshop CCDs and Advanced Image Sensors, Dana Point, CA, USA, 20–22 April 1995; pp. 115–119.
[3]  Krimski, A.; Khaliullin, N.; Rhodes, H. A 2e- Noise 1.3 Mega Pixel CMOS Sensor. Proceedings of the IEEE Workshop CCD and Advanced Image Sensors, Elmau, Germany, 15–17 May 2003; pp. 1–6.
[4]  Sakakibara, M.; Kawahito, S.; Handoko, D.; Nakamura, N.; Satoh, H.; Higashi, M.; Mabuchi, K.; Sumi, H. A high-sensitivity CMOS image sensor with gain-adaptive column amplifiers. IEEE J. Solid-State Circuits 2005, 40, 1147–1156.
[5]  Vu, P.; Fowler, B.; Mims, S.; Liu, C.; Balicki, J.; Do, H.; Li, W.; Appelbaum, J. Low Noise High Dynamic Range 2.3 M pixel CMOS Image Sensor Capable of 100 Hz Frame Rate at Full HD Resolution. Proceedings of International Image Sensor Workshop, Hokkaido Prefecture, Japan, 8–11 June 2011; pp. 161–164.
[6]  Kurchaninov, L. Noise analysis of multiple correlated sampling. Nuclear Instrum. Methods Phys. Res. 1997, 387, 443–449.
[7]  Kawai, N.; Kawahito, S. Noise analysis of high-gain low-noise column readout circuits for CMOS image sensor. IEEE Trans. Electron. Devices 2004, 51, 185–194.
[8]  Kawai, N.; Kawahito, S. Measurement of low-noise column readout circuits for CMOS image sensors. IEEE Trans. Electron. Devices 2006, 53, 1737–1739.
[9]  Suh, S.; Itoh, S.; Aoyama, S.; Kawahito, S. Column-parallel correlated multiple sampling circuits for MOS image sensors and their noise reduction effects. Sensors 2010, 10, 9139–9154.
[10]  Chen, Y.; Xu, Y.; Mierop, A.J.; Albert, J.P. Theuwissen. Column-parallel digital correlated multiple sampling for low-noise CMOS image sensors. IEEE Sens. J. 2012, 12, 793–799.
[11]  Seo, M.W.; Suh, S.; Iida, T.; Takasawa, T.; Isobe, K.; Watanabe, T.; Itoh, S.; Yasytomi, K.; Kawahito, S. A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable resolution column parallel folding-integration/cyclic ADC. IEEE J. Solid-State Circuits 2012, 47, 272–283.
[12]  Seo, M.W.; Sawamoto, T.; Akahori, T.; Liu, Z.; Takasawa, T.; Kosugi, T.; Watanabe, T.; Isobe, K.; Kawahito, S. A low-noise high-dynamic range 17-b 1.3-Mpixel 30-fps CMOS image sensor with column-parallel two-stage folding-integration cyclic ADC. IEEE Trans. Electron. Devices 2012, 59, 3396–3400.
[13]  Konczakowska, A.; Cichosz, J.; Szewczyk, A. A new method for identification of RTS noise. Bull. Pol. Acad. Sci. Tech. Sci. 2006, 54, 457–460.
[14]  Leyris, C.; Martine, F.; Valenza, M.; Hoffmann, A.; Vildeuil, J.C.; Roy, F. Impact of Random Telegraph Signal in CMOS Image Sensors For Low-Light Levels. Proceedings of the 32nd European Solid-State Circuits Conference (ESSCIRC 2006), Montreux, Switzerland, 18–22 September 2006; pp. 376–379.
[15]  Takeuchi, K. Impact of discrete-change-induced variability on scaled MOS devices. IEICE Trans. Electron. 2012, E59.C, 414–420.
[16]  Chen, Y.; Wang, X.; Mierop, A.J.; Albert, J.P. Theuwissen. A CMOS image sensor with in-pixel buried channel source follower and optimized row selector. IEEE Trans. Electron. Devices 2009, 56, 2390–2397.
[17]  Wilburn, B.; Joshi, N.; Vaish, V.; Talvala, E.V.; Antunez, E.; Barth, A.; Adams, A.; Horowitz, M.; Levoy, M. High performance imaging using large camera arrays. ACM Trans. Graph. 2005, 24, 765–776.
[18]  Canon: Fixed Focal Lens. Available online: http://cweb.canon.jp/ef/lineup/standard/index.html (accessed on 10 September 2013).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133