This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.
References
[1]
Yazdi, N.; Ayazi, F.; Najafi, K. Micromachined inertial sensors. Proc. IEEE 1998, 86, 1640–1659.
[2]
Geen, J.A.; Sherman, S.J.; Chang, J.F.; Lewis, S.R. Single-chip surface micromachined integrated gyroscope with 50°/h Allan Deviation. IEEE J. Solid-State Circuits 2002, 37, 1860–1866.
[3]
Lai, S.; Kiang, J. A CMOS-MEMS Single-Chip Dual-Axis Gyroscope. Proceedings of the 4th IEEE International Conference on Microsystems, Packaging, Assembly and Circuits Technology, Taipei, Taiwan, 21–23 October 2009; pp. 305–307.
[4]
Boxenhorn, B.; Greiff, P. A. A Vibratory Micromechanical Gyroscope. Proceedings of the AIAA Guidance and Controls Conference, Minneapolis, Minnesota, 15–17 August 1988; pp. 88–4177.
[5]
Liu, K.; Zhang, W.P.; Chen, W.Y.; Li, K.; Dai, F.Y.; Cui, F.; Wu, X.S.; Ma, G.Y.; Xiao, Q.J. The development of micro-gyroscope technology. J. Micromech. Microeng. 2009, 19, 1–29.
Xie, H.K.; Fedder, G.K. Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope. IEEE Sens. J. 2003, 3, 622–631.
[8]
Tsai, N.; Liou, J.; Lin, C.; Li, T. Design of micro-electromagnetic drive on reciprocally rotating disc used for micro-gyroscopes. Sens. Actuators A: Phys. 2010, 157, 68–76.
[9]
Saukoski, M.; Aaltonen, L.; Halonen, K.A.I. Zero-rate output and quadrature compensation in vibratory MEMS gyroscopes. IEEE Sens. J. 2007, 7, 1639–1651.
[10]
Shakoor, R.I.; Bazaz, S.A.; Burnie, M.; Lai, Y.; Hasan, M.M. Electrothermally actuated resonant rate gyroscope fabricated using the MetalMUMPs. Microelectron. J. 2011, 42, 585–593.
[11]
POST, E.J. Sagnac effect. Rev. Mod. Phys. 1967, 39, 475–493.
[12]
Donley, E.A. Nuclear MagneticResonance Gyroscopes. Proceedings of the IEEE Sensors, Kona, HI, USA, 1–4 November 2010; pp. 17–22.
[13]
Sharma, A.; Zaman, F.M.; Zucher, M.; Ayazi, F. 0.1°/Hr Bias Drift Electronically Matched Tuning Fork Microgyroscope. Proceedings of the 21st IEEE International Conference on MEMS, Tucson, AZ, USA, 13–17 January 2008; pp. 6–9.
[14]
Shkel, A.M.; Acar, C.; Painter, C. Two Types of Micromachined Vibratory Gyroscopes. Proceedings of the IEEE Conference on Sensors, Irvine, CA, USA, 30 October–3 December 2005; pp. 531–536.
[15]
Xie, L.; Xiao, D.; Wang, H.; Wu, X.; Li, S. Sensitivity Analysis and Structure Design for Tri-Mass Structure Micromachined Gyroscope. Proceedings of the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5–8 January 2009; pp. 126–129.
[16]
Chen, Y.; Jiao, J.; Xiong, B.; Che, L.; Li, X.; Wang, Y. A novel tuning fork gyroscope with high Q-factors working at atmospheric pressure. Microsystem. Technol. 2005, 11, 111–116.
[17]
Jiang, T.; Wang, A.L.; Jiao, J.W.; Liu, G.J. Detection capacitance analysis method for tuning fork micromachined gyroscope based on elastic body model. Sens. Actuators A: Phys. 2006, 128, 52–59.
[18]
Che, L.F.; Xiong, B.; Li, Y.F.; Wang, Y.L. A novel electrostatic-driven tuning fork micromachined gyroscope with a bar structure operating at atmospheric pressure. J. Micromech. Microeng. 2010, 20, 1–6.
[19]
Guo, Z.Y.; Yang, Z.C.; Zhao, Q.C.; Lin, L.T.; Ding, H.T.; Liu, X.S.; Cui, J.; Xie, H.; Yan, G.Z. A lateral-axis micromachined tuning fork gyroscope with torsional Z-sensing and electrostatic force-balanced driving. J. Micromech. Microeng. 2010, 20, 1–7.
[20]
Guo, Z.Y.; Yang, Z.C.; Lin, L.T.; Zhao, Q.C.; Cui, J.; Chi, X.Z.; Yan, G.Z. Decoupled comb capacitors for microelectromechanical tuning-fork gyroscopes. IEEE Electron Device Lett. 2010, 31, 26–28.
[21]
Sharma, A.; Zaman, M.; Amini, B.; Ayazi, F. A High-Q In-Plane SOI Tuning Fork Gyroscope. Proceedings of the IEEE Conference on Sensors, Vienna, Austria, 24–27 October 2004; pp. 467–470.
[22]
Zaman, M.; Sharma, A.; Amini, B.; Ayazi, F. Towards Inertial Grade Vibratory Microgyros: A High-Q in-Plane Silicon-on-Insulator Tuning Fork Device. Proceedings of Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, USA, 6–10 June 2004; pp. 384–385.
[23]
Zaman, M.; Sharma, A.; Ayazi, F. High Performance Matched-Mode Tuning Fork Gyroscope. Proceedings of the IEEE Conference on MEMS, Istanbul, Turkey, 22–26 January 2006; pp. 66–69.
[24]
Hao, Z.; Zaman, M.; Sharma, A.; Ayazi, F. Energy Loss Mechanisms in a Bulk-Micromachined Tuning Fork Gyroscope. Proceedings of the 5th IEEE Conference on Sensors, Daegu, Krea, 22–25 October 2006; pp. 1333–1336.
[25]
Sharma, A.; Zaman, M.F.; Ayazi, F. A sub-0.2°/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching. IEEE J. Solid-State Circuits 2009, 44, 1593–1608.
[26]
Walther, A.; Desloges, B.; Lejuste, C.; Coster, B.; Audebert, P.; Willemin, J. Development of a 3D capacitive gyroscope with reduced parasitic capacitance. J. Micromech. Microeng. 2013, 23, 1–8.
[27]
Traechtler, M.; Link, T.; Dehnert, J.; Nommensen, P.; Manoli, Y. Novel 3-Axis Gyroscope on A Single Chip Using SOI-Technology. Proceedings of the IEEE Conference on Sensors, Atlanta, GA, USA, 28–31 October 2007; pp. 124–127.
[28]
Wu, X.Z.; Xie, L.Q.; Xing, J.C.; Dong, P.T.; Wang, H.X.; Su, J.B. A z-axis quartz tuning fork micromachined gyroscope based on shear stress detection. IEEE Sens. J. 2012, 12, 1246–1252.
[29]
Zhou, J.; Jiang, T.; Jiao, J.W.; Wu, M. Design and fabrication of a micromachined gyroscope with high shock resistance. Microsyst. Technol. 2013. in press.
Cui, J.; Liu, Q.; Zhao, Q.; Lin, L.T.; Chi, X.Z.; Yang, Z.C.; Yan, G.Z. An Investigation of Decoupling Performance for a Novel Lateral Axis Gyroscope with Varying Environmental Parameters. Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, CO, USA, 21–25 June 2009; pp. 292–295.
[32]
Braxmaier, M.; GaiBer, A.; Link, T. Cross-Coupling of the Oscillation Modes of Vibratory Gyroscopes. Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, MA, USA, 8–12 June 2003; pp. 167–170.
[33]
Acar, C.; Shkel, A.M. Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement. J. Micromech. Microeng. 2005, 15, 1092–1101.
[34]
Alper, S.E.; Akin, T. A symmetric surface micromachined gyroscope with decoupled oscillation modes. Sens. Actuators A: Phys. 2002, 97–98, 347–358.
[35]
Alper, S.E.; Akin, T. Symmetrical and decoupled nickel microgyroscope on insulating substrate. Sens. Actuators A: Phys. 2004, 115, 336–350.
[36]
Alper, S.E.; Akin, T. A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate. J. Microelectromechanical Syst. 2005, 14, 707–717.
[37]
Alper, S.E.; Azgin, K.; Akin, T. High-performance SOI-MEMS Gyroscope with Decoupled Oscillation Modes. Proceedings of the 19th IEEE International Conference on MEMS, Istanbul, Turkey, 22–26 January 2006; pp. 70–73.
[38]
Alper, S.E.; Azgin, K.; Akin, T. A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure. Sens. Actuators A: Phys. 2007, 135, 34–42.
[39]
Alper, S.E.; Temiz, Y.; Akin, T. A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope. J. Microelectromechanical Syst. 2008, 17, 1418–1429.
[40]
Choi, B.; Lee, S.; Kim, T.; Baek, S.S. Dynamic characteristics of vertically coupled structures and the design of a decoupled micro gyroscope. Sensors 2008, 8, 3706–3718.
[41]
Hwang, K.; Lee, K.; Park, G.; Lee, B.L.; Cho, Y.C.; Lee, S.H. Robust design of a vibratory gyroscope with an unbalanced inner torsion gimbal using axiomatic design. J. Micromech. Microeng. 2003, 13, 8–17.
[42]
Tsai, C.; Chen, K.; Shen, C.; Tsai, J. A MEMS doubly decoupled gyroscope with wide driving frequency range. IEEE Trans. Ind. Electron. 2012, 59, 4921–4929.
[43]
Kulygin, A.; Kirsch, C.; Schwarz, P.; Schmid, U.; Seidel, H. Decoupled surface micromachined gyroscope with single-point suspension. J. Microelectromechanical Syst. 2012, 21, 206–216.
[44]
Greiff, P.; Boxenhom, B.; Niles, L. Silicon Monolithic Micromechanical Gyroscope. Proceedings of the International Conference on Solid-State Sensors and Actuators, San Francisco, CA, USA, 24–27 June 1991; pp. 966–968.
[45]
Niu, M.; Xue, W.; Wang, X.; Xie, J.F.; Yang, G.Q.; Wang, W.Y. Design and Characteristics of Two-Gimbals Micro-Gyroscopes Fabricated with Quasi-LIGA Process. Proceedings of the International Conference on Solid-State Sensors and Actuators, Chicago, IL, USA, 6–19 June 1997; pp. 891–894.
[46]
Geiger, W.; Folkmer, B.; Merz, J. A new silicon rate gyroscope. Sens. Actuators A: Phys. 1999, 73, 45–51.
[47]
Che, L.; Xiong, B.; Wang, Y. Simulation of Characteristic of Comb-gimbal Micromachined Gyroscope. Proceedings of the IEEE Conference on Sensors, Orlando, FL, USA, 12–14 June 2002; pp. 1095–1098.
[48]
Maenaka, K.; Saws, N.; Ioku, S.; Sugimoto, H.; Suzuki, H.; Fujita, T.; Takayama, Y. MEMS Gyroscope with Double Gimbal Structure. Proceedings of the 12th International Conference on transducers, Solid-State Sensors, Actuators and Microsystems, Boston, MA, USA, 8–12 June 2003; pp. 163–166.
[49]
Ayazi, F.; Najafi, K. Design and Fabrication of A High-Performance Polysilicon Vibrating Ring Gyroscope. Proceedings of the Eleventh Annual International Workshop on MEMS, Heidelberg, Germany, 25–29 January 1998; pp. 621–626.
[50]
Ayazi, F.; Najafi, K. A HARPSS polysilicon vibrating ring gyroscope. J. Microelectromechanical Syst. 2001, 10, 169–179.
[51]
He, G.; Najafi, K. A Single-Crystal Silicon Vibrating Ring Gyroscope. Proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 20–24 January 2002; pp. 718–721.
[52]
Wang, J.; Chen, L.; Zhang, M.; Chen, D. A Micromachined Vibrating Ring Gyroscope with Highly Symmetric Structure for Harsh Environment. Proceedings of the 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 20–23 January 2010; pp. 1180–1183.
[53]
Liu, J.; Chen, D.; Wang, J. Regulating parameters of electromagnetic micromachined vibrating ring gyroscope by feedback control. Micro Nano Lett. 2012, 7, 1234–1236.
[54]
Chen, D.; Zhang, M.; Wang, J. An Electrostatically Actuated Micromachined Vibrating Ring Gyroscope with Highly Symmetric Support Beams. Proceedings of the IEEE Conference on Sensors, Kona, HI, USA, 1–4 November 2010; pp. 860–863.
[55]
Zaman, F.M.; Sharma, A.; Amini, V.B.; Ayazi, F. The Resonating Star Gyroscope. Proceedings of the 18th IEEE International Conference on Micro Electro MEMS, Miami, FL, USA, 30 January–3 February 2005; pp. 355–358.
[56]
Gallacher, B.J.; Hedley, J.; Burdess, J.S.; Harris, A.J.; Rickard, A.; King, D.O. Electrostatic Correction of Structural Imperfections Present in a Microring Gyroscope. J. Microelectromechanical Syst. 2005, 14, 221–234.
Acar, C.; Shkel, A.M. A Design Approach for Robustness Improvement of Rate Gyroscopes. Proceedings of the International Conference on Modeling and Simulation of Microsystems, Hilton Head Island, CA, USA, 19–21 March 2001; pp. 80–83.
[59]
Acar, C.; Shkel, A.M. Inherently robust micromachined gyroscopes with 2-DoF sense-mode oscillator. J. Microelectromechanical Syst. 2006, 15, 380–387.
[60]
Trusovs, A.A.; Schofield, A.R.; Shkel, A.M. Micromachined gyroscope concept allowing interchangeable operation in both robust and precision modes. Sens. Actuators A: Phys. 2011, 165, 35–42.
[61]
Trusovs, A.A.; Schofield, A.R.; Shkel, A.M. New Architectural Design of a Temperature Robust MEMS Gyroscope with Improved Gain-Bandwidth Characteristics. Proceedings of the Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, USA, 1–5 June 2008; pp. 14–17.
[62]
Trusovs, A.A.; Schofield, A.R.; Shkel, A.M. Performance characterization of a new temperature-robust gain-bandwidth improved MEMS gyroscope operated in air. Sens. Actuators A: Phys. 2009, 155, 16–22.
Sahin, K.; Sahin, E.; Alper, S.E.; Akin, T. A wide-bandwidth and high-sensitivity robust microgyroscope. J. Micromech. Microeng. 2009, 19, 1–8.
[65]
Schofield, R.A.; Trusovs, A.A.; Shkel, A.M. Anti-Phase Driven Rate Gyroscope with Multi-Degree of Freedom Sense Mode. Proceedings of the International Conference on transducers, Solid-State Sensors, Actuators and Microsystems, Lyon, Frace, 10–14 June 2007; pp. 1119–1202.
[66]
Wang, W.; Lv, X.Y.; Sun, F. Design of micromachined vibratory gyroscope with two degree-of-freedom drive-mode and sense-mode. IEEE Sens. J 2012, 12, 2460–2464.
Juneau, T.; Pisam, A.P.; Smith, J.H. Dual Axis Operation of a Micromachined Rate Gyroscope. Proceedings of the International Conference on Solid-state Sensors and Actuators, Chicago, IL, USA, 16–19 June 1997; pp. 883–886.
[69]
Sung, K.W.; Dalal, M.; Ayazi, F. A Mode-Matched 0.9 MHZ Single Proof-Mass Dual-Axis Gyroscope. Proceedings of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems, Beijing, China, 5–9 June 2011; pp. 2821–2824.
[70]
Tsai, D.; Fang, W. Design and simulation of a dual-axis sensing decoupled vibratory wheel gyroscope. Sens. Actuators A: Phys. 2006, 126, 33–40.
[71]
Chiu, S.; Sue, C.; Lin, C.; Lin, S.; Lin, S.; Hsu, Y.; Su, Y. Design, Fabrication and Performance Characterizations of an Integrated Dual-Axis Tuning Fork Gyroscope. Proceedings of the IEEE Conference on Sensors, Taipei, Taiwan, 28–31 October 2012; pp. 1–4.
[72]
Tsai, N.; Sue, C. Fabrication and analysis of a micro-machined tri-axis gyroscope. J. Micromech. Microeng. 2008, 18, 1–14.
[73]
Tsai, N.; Sue, C. Design and analysis of a tri-axis gyroscope micromachined by surface fabrication. IEEE Sens. J. 2008, 8, 1933–1940.
[74]
Tsai, N.; Sue, C. Experimental analysis and characterization of electrostatic-drive tri-axis micro-gyroscope. Sens. Actuators A: Phys. 2010, 158, 231–239.
[75]
Shkel, A.M. Type I and Type II Micromachined Vibratory Gyroscopes. Proceedings of the IEEE PLANS, Position Location and Navigation Symposium, San Diego, CA, USA, 25–27 April 2006; pp. 586–593.
[76]
Park, S. Adaptive control of a vibratory angle measuring gyroscope. Sensors 2010, 10, 8478–8490.
[77]
Chi, C.; Chen, T. Single-stage vibratory gyroscope control methods for direct angle measurements. Meas. Sci. Technol. 2011, 22, 1–11.
[78]
Piyabongkarn, D.; Rajamani, R.; Greminger, M. The development of a MEMS gyroscope for absolute angle measurement. IEEE Transactions on Control Systems Technology 2005, 13, 185–195.
[79]
Shao, P.; Sorenson, L.D.; Gao, X.; Ayazi, F. Wineglass-On-a-Chip. Proceedings of the Solid State Sensor, Actuator and Microsystems Workshop (Hilton Head 2012), Hilton Head Island, CA, USA, 3–7 June 2012; pp. 275–278.
[80]
Cho, J.; Yan, J.; Gregory, J.A.; Eberhart, H.; Peterson, R.L.; Najafi, K. High-Q Fused Silica Birdbath and Hemispherical 3-D Resonators made by Blow Torch Molding. Proceedings of the 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, China, 20–24 January 2013; pp. 177–180.
[81]
Maenaka, K.; Kohara, H.; Nishimura, M. Novel Solid Micro-Gyroscope. Proceedings of the IEEE Conference on MEMS, Istanbul, Turkey, 22–26 January 2006; pp. 634–637.
[82]
Wu, X.S.; Chen, W.Y.; Lu, Y.P.; Xiao, Q.J.; Ma, G.Y.; Zhang, W.P.; Cui, F. Vibration analysis of a piezoelectric micromachined modal gyroscope(PMMG). J. Micromech. Microeng. 2009, 19, 1–10.
[83]
Lu, Y.P.; Wu, X.S.; Zhang, W.P.; Chen, W.Y.; Cui, F.; Liu, W. Optimization and analysis of novel piezoelectric solid micro-gyroscope with high resistance to shock. Microsyst. Technol. 2010, 16, 571–584.
[84]
Lu, Y.P.; Wu, X.S.; Zhang, W.P.; Chen, W.Y.; Cui, F.; Liu, W. Research on reference vibration for a two-axis piezoelectric micro-machined gyroscope. J. Micromech. Microeng. 2010, 20, 1–9.
Roland, I.; Masson, S.; Ducloux, O.; Le Traon, O.; Bosseboeuf, A. GaAs-based tuning fork microresonators: A first step towards a GaAs-based Coriolis 3-axis micro-vibrating rate gyro (GaAs 3-axis μCVG). Sens. Actuators A: Phys. 2011, 172, 204–211.
[87]
Oh, H.; Lee, K.; Yang, S. The Development of Novel Surface Acoustic Wave MEMS-IDT Gyroscope Based on Standing Wave Mode. Proceedings of the Transducers International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, CO, USA, 21–25 June 2009; pp. 1162–1165.
[88]
Oh, H.; Lee, K.; Yang, S. Development of Passive Surface Acoustic Wave Gyroscope with Standing Wave Mode. Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 23–27 January 2011; pp. 565–568.
[89]
Oh, H.; Lee, K.; Yang, S. A novel shock and heat tolerant gyrosensor utilizing a one-port surface acoustic wave reflective delay line. J. Micromech. Microeng. 2012, 22, 1–9.
[90]
Wang, W.; He, S.; Li, S.; Liu, M. Design of A New Wireless SAW Gyroscope Based on Standing Wave Mode. Proceedings of the IEEE Conference on Ultrasonics Symposium (IUS), San Diego, CA, USA, 11–14 October 2010; pp. 1431–1434.
[91]
Oh, H.; Lee, K.; Yang, S. Development of novel dual-axis sensing gyroscope using surface acoustic wave. Microelectron. Eng. 2012, 97, 259–264.
[92]
Liu, Q.H.; Wu, X.Z.; Di, D.; Dong, P.T.; Fan, D.P. Design of A Novel MEMS IDT Dual Axes Surface Acoustic Wave Gyroscope. Proceedings of the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5–8 January 2009; pp. 889–893.
[93]
Oh, H.; Wang, W.; Yang, S.; Lee, K. Development of SAW based gyroscope with high shock and thermal stability. Sens. Actuators A: Phys. 2011, 165, 8–15.
[94]
Johari, H.; Ayazi, F. Capacitive Bulk Acoustic Wave Silicon Disk Gyroscopes. Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4.
[95]
Johari, H.; Ayazi, F. High-Frequency Capacitive Disk Gyroscope in (100) and (111) Silicon. Proceedings of 20th IEEE International Conference on MEMS, Kobe, Japan, 21–25 January 2007; pp. 47–50.
[96]
Shah, J.; Johari, H.; Sharma, A.; Ayazi, F. CMOS ASIC for MHz Silicon BAW Gyroscope. Proceedings of the IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 2458–2461.
[97]
Sung, W.; Dalal, M.; Ayazi, F. A 3MHZ Spoke Gyroscope with Wide Bandwidth and Large Dynamic Range. Proceedings of the 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 24–28 January 2010; pp. 104–107.
[98]
Tabrizian, R.; Mojtaba, H.S.; Ayazi, F. High-frequency AlN-on-silicon resonant square gyroscopes. J. Microelectromechanical Syst. 2013, 22, 1007–1009.
[99]
Nitzan, S.; Ahn, C.H.; Su, T.H.; Li, M.; Ng, E.J.; Wang, S.; Yang, Z.M.; O'Brien, G.; Boser, B.E.; Kenny, T.W.; Horsley, D.A. Epitaxially-Encapsulated Polysilicon Disk Resonator Gyroscope. Proceedings of the 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, China, 20–24 January 2013; pp. 625–628.
Damrongsak, B.; Kraft, M. A Micromachined Electrostatically Suspended Gyroscope with Digital Force Feedback. Proceedings of the 4th IEEE Conference on Sensors, Irvine, CA, USA, 31 October–3 November 2005; pp. 401–405.
[102]
Damrongsak, B.; Kraft, M. Design and Simulation of a Micromachined Electrostatically Suspended Gyroscope. Proceedings of the Institution of Engineering and Technology Seminar on MEMS Sensors and Actuators, ICEPT, Shanghai, China, 26–29 August 2006; pp. 267–272.
[103]
Kraft, M.; Farooqui, M.M.; Evans, A.G.R. Modelling and design of an electrostatically levitated disc for inertial sensing applications. J. Micromech. Microeng. 2001, 11, 423–427.
[104]
Xiao, Q.J.; Chen, W.Y.; Li, S.Y.; Zhang, W.P. Simulation of Levitation Control for A Micromachined Electrostatically Levitated Gyroscope. Proceedings of the NEMS 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5–8 January 2009; pp. 160–163.
[105]
Xiao, Q.J.; Chen, W.Y.; Li, S.Y.; Cui, F.; Zhang, W.P. Modeling and simulation of levitation control for a micromachined electrostatically suspended gyroscope. Microsyst. Technol. 2010, 16, 357–366.
[106]
Xiao, Q.J.; Li, S.Y.; Chen, W.Y.; Cui, F.; Zhang, W.P. Fuzzy tuning PI control for initial levitation of micromachined electrostatically levitated gyroscope. Electron. Lett. 2009, 45, 818–819.
[107]
Ma, G.Y.; Chen, W.Y.; Zhang, W.P.; Cui, F.; Li, K. Compact H∞ robust rebalance loop controller design for a micromachined electrostatically suspended gyroscope. ISA Trans. 2010, 49, 222–228.
[108]
Han, F.T.; Liu, Y.F.; Wang, L.; Ma, G.Y. Micromachined electrostatically suspended gyroscope with a spinning ring-shaped rotor. J. Micromech. Microeng. 2012, 22, 1–9.
[109]
Williams, C.B.; Shearwood, C.; Mellor, P.B.; Yates, R.B. Modelling and testing of a frictionless levitated micromotor. Sens. Actuators 1997, 67, 469–473.
[110]
Shearwood, C.; Ho, K.Y.; Williams, C.B.; Gong, H. Development of a levitated micromotor for application as a gyroscope. Sens. Actuators 2000, 83, 85–92.
[111]
Zhang, W.P.; Chen, W.Y.; Zhao, X.L.; Wu., X.S.; Liu, W.; Huang, X.G.; Shao, S.Y. The study of an electromagnetic levitating micromotor for application in a rotating gyroscope. Sens. Actuators 2006, 132, 651–657.
Liu, K.; Zhang, W.P.; Liu, W.; Chen, W.J.; Li, K.; Cui, F.; Li, S.P. An innovative micro-diamagnetic levitation system with coils applied in micro-gyroscope. Microsyst. Technol. 2010, 16, 431–439.
[114]
Xue, G.; Zhang, X.T.; Zhang, H.W. Electromagnetic Design of a Magnetically Suspended Gyroscope Prototype. Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Chengdu, China, 25–27 September 2009; pp. 369–373.
[115]
Tsai, N.; Huang, W.; Chiang, C. Magnetic actuator design for single-axis micro-gyroscopes. Microsyst. Technol. 2009, 15, 493–503.
[116]
Armenise, M.N.; Passaro, V.M.N.; de Leonardis, F.; Armenise, M. Modeling and design of a novel miniaturized integrated optical sensor for gyroscope systems. J. Light. Technol. 2001, 19, 1476–1494.
[117]
Cao, H.; Liu, C.; Ling, H.; Deng, H.; Benavidez, M.; Smagley, V.A.; Caldwell, R.B.; Peake, G.M.; Smolyakov, G.A.; Eliseev, P.G.; Osinski, M. Frequency beating between monolithically integrated semiconductor ring lasers. Appl. Phys. Lett. 2005, 86, 041101:1–041101:3.
Ciminelli, C.; Passaro, V.M.N.; Dell'Olio, F.; Armenise, M.N. Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides. J. Eur. Opt. Soc. 2009, 4, 1–6.
[120]
Dell'Olio, F.; Ciminelli, C.; Armenise, M.N. Theoretical investigation of indium phosphide buried ring resonators for new angular velocity sensors. Opt. Eng. 2013, 52, 1–8.
[121]
Sa-Ngiamsak, W.; Sirawattananon, C.; Srinuanjan, K.; Mitatha, S.; Yupapin, P.P. Micro-optical gyroscope using a PANDA ring resonator. IEEE Sens. J. 2012, 12, 2609–2613.
[122]
Mitatha, S.; Sirawattananon, C.; Ali, J.; Yupapin, P.P. Four point probe micro-optical gyroscope with self calibration control. IEEE Sens. J. 2013, 13, 2705–2710.
Kim, H.K.; Digonnet, M.J.F.; Kino, G.S. Air-core photonic-bandgap fiber-optic gyroscope. J. Light. Technol. 2006, 24, 3169–3174.
[125]
Blin, S.; Kim, H.K.; Digonnet, M.J.F.; Kino, G.S. Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber. J. Light. Technol. 2007, 25, 861–865.
[126]
Lloyd, S.W.; Fan, S.; Digonnet, M.J.F. Experimental observation of low noise and low drift in a laser-driven fiber optic gyroscope. J. Light. Technol. 2013, 31, 2079–2085.
[127]
Ma, H.L.; He, Z.Y.; Hotate, K. Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro. J. Light. Technol. 2011, 29, 85–90.
[128]
Ma, H.L.; Wang, W.Y.; Ren, Y.; Jin, Z.H. Low-noise low-delay digital signal processor for resonant micro optic gyro. IEEE Photonics Technol. Lett. 2013, 25, 198–201.
[129]
Lei, M.; Feng, L.S.; Zhi, Y.Z.; Liu, H.L.; Wang, J.J.; Ren, X.Y.; Su, N. Current modulation technique used in resonator micro-optic gyro. Appl. Opt. 2013, 52, 307–313.
Kornack, T.W.; Ghosh, R.K.; Romalis, M.V. Nuclear spin gyroscope based on an atomic comagnetometer. Phys. Rev. Lett. 2005, 95, 1–4.
[132]
Ajoy, A.; Cappellaro, P. Stable three-axis nuclear-spin gyroscope in diamond. Phys. Rev. 2012, 86, 1–7.
[133]
Dayon, D.J.; Toland, J.R.E.; Search, C.P. Atom gyroscope with disordered arrays of quantum rings. J. Phys. B: At. Mol. Opt. Phys. 2010, 43, 1–10.
[134]
Yokota, S.; Suzuki, M.; Takemura, K.; Edamura, K.; Kumagai, H.; Imamura, T. Concept of a Liquid Rate Gyroscope using an Electro-conjugate Fluid. Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 317–322.
[135]
Takemura, K.; Yokota, S.; Suzuki, M.; Edamura, K.; Kumagaie, H.; Imamura, T. A liquid rate gyroscope using electro-conjugate fluid. Sens. Actuators A: Phys. 2009, 149, 173–179.
[136]
Shiozawa, T.; van Dau, T.; Dao, D.V.; Kumagai, H.; Sugiyama, S. A Dual Axis Thermal Convective Silicon Gyroscope. Proceedings of the 2004 International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, 31 October–3 November 2004; pp. 277–282.
[137]
Dinh, T.X.; Ogami, Y. Design and simulation of MEMS-based dual-axis fluidic angular velocity sensor. Sens. Actuators A: Phys. 2013, 189, 61–66.
[138]
Ai, Y.; Luo, X.B.; Liu, S. Design of A Novel Micro Thermo-Fluidic Gyroscope. Proceedings of the IEEE 7th International Conference on Electronics Packaging Technology, Shanghai, China, 26–29 August 2006; pp. 1–4.
[139]
Feng, R.; Bahari, J.; Jones, J.D.; Leung, A.M. MEMS Thermal gyroscope with self-compensation of the linear acceleration effect. Sens. Actuators A: Phys. 2013, 203, 413–420.
[140]
Bahari, J.; Feng, R.; Leung, A.M. Robust MEMS gyroscope based on thermal principles. J. Microelectromechanical Syst. 2013. In Press.
[141]
Chang, H.L.; Zhou, P.L.; Xie, Z.J.; Gong, X.H.; Yang, Y.; Yuan, W.Z. Theoretical modeling for a six-DOF vortex inertial sensor and experimental verification. J. Microelectromechanical Syst. 2013, 22, 1100–1108.
[142]
Marahatta, A.B.; Kanno, M.; Hoki, K.; Setaka, W.; Irle, S.; Kono, H. Theoretical investigation of the structures and dynamics of crystalline molecular gyroscopes. J. Phys. Chem. C 2012, 116, 24845–24854.
[143]
Xiong, B.; Che, L.F.; Wang, Y.L. A novel bulk micromachined gyroscope with slots structure working at atmosphere. Sens. Actuators 2003, 107, 137–145.
[144]
Hu, S.C.; Jin, Z.H.; Zhu, H.J.; Wang, H.; Ma, M.J. A slot-structure MEMS gyroscope working at atmosphere with tunable electrostatic spring constant. J. Microelectromechanical Syst. 2013, 22, 909–918.
[145]
Esmaeili, M.; Jalili, N.; Durali, M. Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion. J. Sound Vib. 2007, 301, 146–164.
[146]
Ghommem, M.; Nayfeh, A.H.; Choura, S.; Najar, F.; Abdel-Rahman, E.M. Modeling and performance study of a beam microgyroscope. J. Sound Vib. 2010, 329, 4970–4979.
[147]
Liu, Y.; Lu, Y.L.; Du, X.P.; Liu, S. Analysis of high shocking resistance of an improved node-plane supporting vibration beam gyroscope. Int. J. Digit. Content Technol. Appl. 2012, 16, 319–328.
Yang, B.; Wang, S.; Li, K.; Zhu, X.; Cao, H. Research on a New Microelectromechanical Hybrid Gyroscope. Proceedings of the IEEE International Conference on Information andAutomation, Harbin, China, 20–23 June 2010; pp. 1520–1525.
[151]
Xia, D.Z.; Yu, C.; Kong, L. A micro dynamically tuned gyroscope with adjustable static capacitance. Sensors 2013, 13, 2176–2195.
[152]
Yang, Z.; Nakajima, M.; Shen, Y.; Fukuda, T. Nano-gyroscope device using field emission of isolated carbon nanotube. Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, 4–7 November 2012; pp. 256–261.
[153]
Zotov, S.A.; Trusov, A.A.; Shkel, A.M. High-range angular rate sensor based on mechanical frequency modulation. J. Microelectromechanical Syst. 2012, 21, 398–405.
[154]
Zotov, S.A.; Prikhodko, I.P.; Trusov, A.A.; Shkel, A.M. Frequency Modulation Based Angular Rate Sensor. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 23–27 January 2011; pp. 577–580.
[155]
Li, J.L.; Fang, J.C.; Dong, H.F.; Tao, Y. Structure design and fabrication of a novel dual-mass resonant output micromechanical gyroscope. Microsyst. Technol. 2010, 16, 543–552.
[156]
Aaltonen, L.; Halonen, K.A.I. An analog drive loop for a capacitive MEMS gyroscope. Analog. Integr. Circuit Signal 2010, 63, 465–476.
[157]
Sung, W.; Sung, S.; Lee, J.; Kang, T.; Lee, Y.J.; Lee, J.G. Development of a lateral velocity-controlled MEMS vibratory gyroscope and its performance test. J. Micromech. Microeng. 2008, 18, 1–14.
[158]
Cui, J.; Chi, X.Z.; Ding, H.T.; Lin, L.T.; Yang, Z.C.; Yan, G.Z. Transient response and stability of the AGC-PI closed-loop controlled MEMS vibratory gyroscopes. J. Micromech. Microeng. 2009, 12, 1–17.
[159]
Xia, D.Z.; Chen, S.L.; Wang, S.R. Development of a prototype miniature silicon microgyroscope. Sensors 2009, 9, 4586–4605.
[160]
Yang, B.; Zhou, B.L.; Wang, S.R. A precision closed-loop driving scheme of silicon micromachined vibratory gyroscope. J. Phys. Conf. Series 2006, 34, 57–64.
[161]
Yang, B.; Li, H.S.; Zhou, B.L.; Wang, S.R. Mechanical-thermal noise in drive-mode of a silicon micro-gyroscope. Sensors 2009, 9, 3357–3375.
[162]
Mo, B.; Liu, X.W.; Ding, X.W.; Tan, X.Y. A Novel Closed-Loop Drive Circuit for the Micromechined Gyroscope. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007; pp. 3384–3390.
[163]
Eminoglu, B.; Alper, S.E.; Akin, T. An optimized analog drive-mode controller for vibratory MEMS gyroscopes. Procedia Eng. 2011, 25, 1309–1312.
[164]
Fang, R.; Lu, W.G.; Tao, T.T.; Wang, G.N.; Chen, Z.J.; Zhang, Y.C.; Yu, D.S. A Control and Readout Circuit with Capacitive Mismatch Auto-Compensation for MEMS Vibratory Gyroscope. Proceedings of 11th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Xi'an, China, 29 October–1 November 2012; pp. 1–3.
[165]
Feng, L.H.; Zhang, Z.X.; Sun, Y.N.; Cui, F. Differential pickup circuit design of a kind of Z-axis MEMS quartz gyroscope. Procedia Eng. 2011, 15, 999–1003.
[166]
Loveday, P.W.; Rogers, C.A. The influence of control system design on the performance of vibratory gyroscopes. J. Sound Vib. 2002, 255, 417–432.
[167]
Cui, J.; Guo, Z.Y.; Zhao, Q.C.; Yang, Z.C. Force rebalance controller synthesis for a micromachined vibratory gyroscope based on sensitivity margin specifications. J. Microelectromechanical Syst. 2011, 20, 1382–1394.
[168]
Oboe, R.; Antonello, R.; Lasalandra, E.; Durante, G.S.; Prandi, L. Control of a Z-axis MEMS vibrational gyroscope. IEEE-ASME Trans. Mechatron. 2005, 10, 364–370.
[169]
Wu, H.M.; Yang, H.G.; Yin, T.; Zhang, H. Stability Analysis of MEMS Gyroscope Drive Loop Based on CPPLL. Proceedings of the 2011 Asia Pacific Conference on Microelectronics and Electronics, Macao, China, 6–7 October 2011; pp. 45–48.
[170]
Park, S.; Tan, C.W.; Kim, H.; Hong, S.K. Oscillation control algorithms for resonant sensors with applications to vibratory gyroscopes. Sensors 2009, 8, 5952–5967.
[171]
Niu, S.H.; Gao, S.Q.; Liu, H.P. A Digital Control System for Micro-Comb Gyroscope. Proceedings of the 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 757–760.
[172]
Alexander, G.; Gao, H.Y.; Zhou, B.; Zhang, R.; Chen, Z.Y. Scale factor determination of micro-machined angular rate sensors without a turntable. Tsinghua Sci. Technol. 2006, 11, 533–537.
[173]
Gaiber, A.; Geiger, W.; Link, T.; Merz, J.; Steigmajer, S.; Hauser, A.; Sandmaier, H.; Lang, W.; Niklasch, N. New digital readout electronics for capacitive sensors by the example of micromachined gyroscopes. Sens. Actuators 2002, 97–98, 557–562.
[174]
Trusov, A.A.; Chepurko, I.; Schofield, A.R.; Shkel, A.M. A Standalone Programmable Signal. Proceeding of the 6th IEEE Sensors Conference Processing Unit for Versatile Characterization of MEMS Gyroscopes, Atlanta, Georgia, USA, 28–31 October 2007; pp. 244–247.
[175]
Chen, Y.; M'Closkey, R.T.; Tran, T.A.; Blaes, B. A control and signal processing integrated circuit for the JPL-boeing micromachined gyroscopes. IEEE Trans. Control Syst. Techn. 2005, 13, 286–300.
[176]
Keymeulen, D.; Ferguson, M.I.; Breuer, L.; Peay, C.; Oks, B.; Yen-Cheng; Kim, D.; MacDonald, E.; Foor, D.; Terrile, R.; Yee, K. Tuning of MEMS Gyroscope Using Evolutionary Algorithm and “Switched Drive-Angle” Method. Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; pp. 1–8.
[177]
Liu, D.C.; Lu, N.N.; Cui, J.; Lin, L.T.; Ding, H.T.; Yang, Z.C.; Hao, Y.L.; Yan, G.Z. Digital Closed-Loop Control Based on Adaptive Filter for Drive Mode of A MEMS Gyroscope. Proceedings of the IEEE Sensors Conference, Limerick, Ireland, 1–4 Novemebr 2010; pp. 1722–1726.
[178]
Xia, D.Z.; Yu, C.; Wang, Y.L. A digitalized silicon microgyroscope based on embedded FPGA. Sensors 2012, 12, 13150–13166.
[179]
Yang, Z.H.; Jin, X.J.; Ma, H.L.; Jin, Z.H. CORDIC algorithm based digital detection technique applied in resonator fiber. Opt. Fiber Technol. 2009, 15, 328–331.
[180]
Fu, Q.; Chen, S.; Liu, L.; Wang, P.F.; Chen, W.P.; Liu, X.W. A High Bandwidth Sigma-Delta Modulator Applied in Micro-Gyroscope. Proceedings of the 14th Annual Conference of the Chinese Society of Micro-Nano Technology and the 3rd International Conference of the Chinese Society of Micro-Nano Technology, Hangzhou, China, 4–7 November 2012; pp. 1–5.
[181]
Raman, J.; Cretu, E.; Rombouts, P.; Weyten, L. A closed-loop digitally controlled MEMS gyroscope with unconstrained sigma-delta force-feedback. IEEE Sens. J. 2009, 9, 297–305.
[182]
Raman, J.; Cretu, E.; Rombouts, P.; Weyten, L. A Digitally Controlled MEMS Gyroscope with Unconstrained Sigma-Delta Force-Feedback Architecture. Proceedings of the IEEE MEMS Conference, Istanbul, Turkey, 22–26 January 2006; pp. 22–26.
[183]
Raman, J.; Rombouts, P.; Weyten, L. An Unconstrained architecture for systematic design of higher order ΣΔ force-feedback loops. IEEE Trans. Circuit Syst. 2008, 55, 1601–1614.
[184]
Saukoski, M.; Aaltonen, L.; Halonen, K. Integrated Readout and Control Electronics for a Microelectromechanical Angular Velocity Sensor. Proceedings of the 32nd European Solid-State Circuits Conference, Montreux, Switzerland, 19–21 September 2006; pp. 243–246.
[185]
Saukoski, M.; Aaltonen, L.; Salo, T.; Halonen, K.A.I. Interface and control electronics for a bulk micromachined capacitive gyroscope. Sens. Actuators A: Phys. 2008, 147, 183–193.
[186]
Northemann, T.; Maurer, M.; Rombach, S.; Buhmann, A.; Manoli, Y. A Digital interface for gyroscopes controlling the primary and secondary mode using bandpass sigma-delta modulation. Sens. Actuators A 2010, 162, 388–393.
[187]
Northemann, T.; Maurer, M.; Buhmann, A.; He, L.; Manoli, Y. Excess loop delay compensated electro-mechanical bandpass sigma-delta modulator for gyroscopes. Procedia Chem. 2009, 1, 1183–1186.
[188]
Wilcock, R.; Kraft, M. Genetic algorithm for the design of electro-mechanical sigma delta modulator MEMS sensors. Sensors 2011, 11, 9217–9232.
[189]
Donga, Y.; Kraft, M.; Hedenstierna, N.; Redman White, W. Microgyroscope control system using a high-order band-pass continuous-time sigma-delta modulator. Sens. Actuators 2008, 145–146, 299–305.
[190]
Chen, F.; Chang, H.L.; Yuan, W.Z.; Wilcock, R.; Kraft, M. Parameter optimization for a high-order band-pass continuous-time sigma-delta modulator MEMS gyroscope using a genetic algorithm approach. J. Micromech. Microeng. 2012, 22, 1–13.
[191]
Sung, S; Sung, W.; Kim, C.; Yun, S.; Lee, Y.J. On the mode-matched control of MEMS vibratory gyroscope via phase-domain analysis and design. IEEE-ASME Trans. Mechatron. 2009, 14, 446–455.
[192]
Sung, W.T.; Lee, J.Y.; Lee, J.G.; Kang, T. Design and Fabrication of An Automatic Mode Controlled Vibratory Gyroscope. Proceedings of the 19th IEEE International Conference on MEMS, Istanbul, Turkey, 22–26 January 2006; pp. 674–677.
[193]
Antonello, R.; Oboe, R.; Prandi, L.; Biganzoli, F. Automatic mode matching in MEMS vibrating gyroscopes using extremum-seeking control. IEEE Trans. Ind. Electron. 2009, 56, 3880–3891.
[194]
Shchedov, K.; Evans, C.; Gutierrez, R.; Tang, T.K. Temperature Dependent Characteristics of the JPL Silicon MEMS Gyroscope. Proceedings of the 2000 IEEE Aerospace Conference, Big Sky, MT, USA, 18–25 March 2000; pp. 403–411.
[195]
Weinberg, M.S.; Kourepenis, A. Error sources in in-plane silicon tuning-fork MEMS gyroscopes. J. Microelectromechanical Syst. 2006, 15, 479–491.
Kim, B.; Hopcroft, M.A.; Candler, R.N.; Jha, C.M.; Agarwal, M.; Melamud, R.; Chandorkar, S.A.; Yama, G.; Kenny, T.W. Temperature dependence of quality factor in MEMS resonators. J. Microelectromechanical Syst. 2008, 17, 755–766.
[198]
Hsu, W.T.; Clark, J.R.; Nguyen, C.T.C. Mechanically Temperature-Compensated Flexural-Mode Micromechanical Resonators. Proceedings of the IEEE Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2000; pp. 399–402.
[199]
Lee, S.H.; Cho, J.; Lee, S.W.; Zaman, M.F.; Ayazi, F.; Najafi, K. A Low-Power Oven-Controlled Vacuum Package Technology for High-Performance MEMS. Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009; pp. 753–756.
[200]
Rajagopal, K.R.; Singh, B.; Singh, B.P.; Vedachalam, N. Novel methods of temperature compensation for permanent magnet sensors and actuators. IEEE Trans. Magn. 2001, 37, 1995–1997.
[201]
Zhang, Q.T.; Tan, Z.F.; Guo, L.D. Compensation of Temperature Drift of MEMS Gyroscope Using BP Neural Network. Proceedings of the International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009; pp. 1–4.
[202]
Xia, D.Z.; Chen, S.L.; Wang, S.R.; Li, H.S. Microgyroscope temperature effects and compensation-control methods. Sensors 2009, 9, 8349–8376.
[203]
Liu, D.C.; Chi, X.Z.; Cui, J.; Lin, L.T.; Zhao, Q.C.; Yang, Z.C.; Yan, G.Z. Research on Temperature Dependent Characteristics and Compensation Methods for Digital Gyroscope. Proceedings of the 3rd International Conference on Sensing Technology, Tainan, Taiwan, 30 November–3 December 2008; pp. 273–277.
[204]
Wang, X.; Wu, W.Q.; Fang, Z.; Luo, B.; Li, Y.; Jiang, Q.G. Temperature drift compensation for hemispherical resonator gyro based on natural frequency. Sensors 2012, 12, 6434–6446.
[205]
Prikhodko, I.P.; Trusov, A.A.; Shkel, A.M. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens. Actuators 2013, 201, 517–524.
[206]
Zhou, B.; Zhang, R.; Chen, Z.Y. Online self-compensation for enhanced the scale factor stability of a micromachined gyroscope. J. Phys. 2009, 188, 1–6.
[207]
Niu, S.H.; Gao, S.Q. Analysis of Nonlinearities in Force-to-Voltage Conversion in Vibratory Microgyroscope. Proceedings of the Measuring Technology and Mechatronics Automation (ICMTMA 2010), Changsha, China, 13–14 March 2010; pp. 551–554.
[208]
Phani, A.S.; Seshia, A.A.; Palaniapan, M.; Howe, R.T.; Yasaitis, J.A. Modal coupling in micromechanical vibratory rate gyroscopes. IEEE Sens. J. 2006, 6, 1144–1152.
[209]
Painter, C.C.; Shkel, A.M. Identification of anisoelasticity for electrostatic “trimming” of rate integrating gyroscopes. Smart Struct. Mater. 2002, 4700, 157–168.
[210]
Antonello, R.; Oboe, R.; Prandi, L.; Caminada, C.; Biganzoli, F. Open Loop Compensation of the Quadrature Error in MEMS Vibrating Gyroscopes. Proceedings of the 35th Annual Conference of IEEE on Industrial Electronics, Porto, Portugal, 3–6 November 2009; pp. 4034–4039.
[211]
Tatar, E.; Alper, S.E.; Akin, T. Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. J. Microelectromech. Syst. 2012, 21, 656–667.
[212]
Maurer, M.; Northemann, T.; Manoli, Y. Quadrature compensation for gyroscopes in electromechanical bandpass ΣΔ-modulators beyond full-scale limits using pattern recognition. Procedia Eng. 2011, 25, 1589–1592.
[213]
Wang, W.; Lv, X.Y.; Sun, F. Design of a novel MEMS gyroscope array. Sensors 2013, 13, 1651–1663.
[214]
Jiang, C.Y.; Xue, L.; Chang, H.L.; Yuan, G.G.; Yuan, W.Z. Signal processing of MEMS gyroscope arrays to improve accuracy using a 1st order markov for rate signal modeling. Sensors 2012, 12, 1720–1737.
[215]
Casinovi, G.; Sung, W.K.; Dalal, M.; Shirazi, A.N.; Ayazi, F. Electrostatic self-calibration of vibratory gyroscopes. Proceedings of IEEE 25th International Conference on MEMS, Paris, France, 29 January–2 February 2012; pp. 559–562.
[216]
Li, J.; Broas, M.; Makkonen, J.; Mattila, T.T.; Hokka, J.; Paulasto-Krockel, M. Shock impact reliability and failure analysis of a three-axis MEMS gyroscope. J. Microelectromechanical Syst. 2013. In Press.
[217]
Hong, S.K. Compensation of nonlinear thermal bias drift of resonant rate sensor using fuzzy logic. Sens. Actuators 1999, 78, 143–148.
[218]
Dean, R.N.; Castro, S.T.; Flowers, G.T.; Roth, G.; Ahmed, A.; Hodel, A.S.; Grantham, B.E.; Bittle, D.A.; Brunsch, J.P. A characterization of the performance of a MEMS gyroscope in acoustically harsh environments. IEEE Trans. Ind. Electr. 2011, 58, 2591–2596.
[219]
Yole Development. The growth of the MEMS Market. Proceedings of the SEMI Networking, Day Italy, Milano, Italy, 20 September 2012.
[220]
MEMS and Sensors. Available online: http://www.st.com (accessed on 14 November 2013).
[221]
InvenSense Product Overview. Available online: http://www.invensense.com (accessed on 14 November 2013).
[222]
Analog Devices. Available online: http://www.analog.com (accessed on 14 November 2013).
[223]
Silicon Sensing. Available online: http://www.siliconsensing.com (accessed on 14 November 2013).