全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring

DOI: 10.3390/s140101208

Keywords: piezoelectric sensors, PZT, structural health monitoring, SHM, electromechanical impedance, EMI, temperature

Full-Text   Cite this paper   Add to My Lib

Abstract:

The electromechanical impedance (EMI) technique is considered to be one of the most promising methods for developing structural health monitoring (SHM) systems. This technique is simple to implement and uses small and inexpensive piezoelectric sensors. However, practical problems have hindered its application to real-world structures, and temperature effects have been cited in the literature as critical problems. In this paper, we present an experimental study of the effect of temperature on the electrical impedance of the piezoelectric sensors used in the EMI technique. We used 5H PZT (lead zirconate titanate) ceramic sensors, which are commonly used in the EMI technique. The experimental results showed that the temperature effects were strongly frequency-dependent, which may motivate future research in the SHM field.

References

[1]  Ostachowicz, W.; Güemes, J.A. New Trends in Structural Health Monitoring, International Centre for Mechanical Sciences, Courses and Lectures; Springer: Vienna, Italy, 2013; p. p. 434.
[2]  Giurgiutiu, V. Embedded NDT with Piezoelectric Wafer Active Sensors. In Nondestructive Testing of Materials and Structures; Buyukozturk, O., Tasdemir, M.A., Gunes, O., Akkaya, Y., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 6, pp. 987–992.
[3]  Yu, L.; Leckey, C.A.C. Lamb wave-based quantitative crack detection using a focusing array algorithm. J. Intell. Mater. Syst. Struct. 2013, 24, 1138–1152.
[4]  Schmitt, M.; Olfert, S.; Rautenberg, J.; Lindner, G.; Henning, B.; Reindl, L.M. Multi reflection of lamb wave emission in an acoustic waveguide sensor. Sensors 2013, 13, 2777–2785.
[5]  Sve?ko, R.; Kusi?, D.; Kek, T.; Sarja?, A.; Han?i?, A.; Grum, J. Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors. Sensors 2013, 13, 6365–6379.
[6]  Shahidan, S.; Pulin, R.; Bunnori, N.M.; Holford, K.M. Damage classification in reinforced concrete beam by acoustic emission signal analysis. Constr. Build. Mater. 2013, 45, 78–86.
[7]  Rulli, R.P.; Dotta, F.; da Silva, P.A. Flight tests performed by EMBRAER with SHM systems. Key Eng. Mater. 2013, 558, 305–313.
[8]  García-Martín, J.; Gómez-Gil, J.; Vázquez-Sánchez, E. Non-destructive techniques based on eddy current testing. Sensors 2011, 11, 2525–2565.
[9]  Annamdas, V.G.M.; Radhika, M.A. Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods. J. Intell. Mater. Syst. Struct. 2013, 24, 1021–1042.
[10]  Park, G.; Cudney, H.H.; Inman, D.J. Feasibility of using impedance-based damage assessment for pipeline structures. Earthq. Eng. Struct. Dyn. 2001, 30, 1463–1474.
[11]  Park, G.; Cudney, H.H.; Inman, D.J. Impedance-based health monitoring of civil structural components. J. Infrastruct. Syst. 2000, 6, 153–160.
[12]  Busch-Vishniac, I.J. Electromechanical Sensors Actuators: Mechanical Engineering Series; Springer: Berlin, Germany, 1998; p. p. 343.
[13]  Baptista, F.G.; Vieira Filho, J. Transducer loading effect on the performance of PZT-based SHM systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 933–941.
[14]  Peairs, D.M.; Park, G.; Inman, D.J. Improving accessibility of the impedance-based structural health monitoring method. J. Intell. Mater. Syst. Struct. 2004, 15, 129–139.
[15]  Boukabache, H.; Escriba, C.; Zedek, S.; Medale, D.; Rolet, S.; Fourniols, J.Y. System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring. Sensors 2012, 12, 13617–13635.
[16]  Cortez, E.N.; Vieira Filho, J.; Baptista, F.G. A new microcontrolled structural health monitoring system based on the electromechanical impedance principle. Struct. Health Monit. 2013, 12, 14–22.
[17]  Giurgiutiu, V.; Rogers, C.A. Recent Advancements in the Electro-Mechanical (E/M) Impedance Method for Structural Health Monitoring and NDE. Proceedings of the Conference on Smart Structures and Integrated Systems, San Diego, FL, USA, 1 March 1998; pp. 536–547.
[18]  Marqui, C.R.; Bueno, D.D.; Baptista, F.G.; Vieira Filho, J.; Santos, R.B.; Lopes Junior, V. External Disturbance Effect in Damage Detection Using Electrical Impedance. Proceedings of the International Modal Analysis Conference, Orlando, FL, USA, 4–7 February 2008; p. p. 286.
[19]  Ilg, J.; Rupitsch, S.J.; Lerch, R. Impedance-based temperature sensing with piezoceramic devices. IEEE Sens J. 2013, 13, 2442–2449.
[20]  Ni, Y.Q.; Hua, X.G.; Fan, K.Q.; Ko, J.M. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Eng. Struct. 2005.
[21]  Lim, H.J.; Kim, M.K.; Sohn, H.; Park, C.Y. Impedance based damage detection under varying temperature and loading conditions. NDT&E Int. 2011, 44, 740–750.
[22]  Bastani, A.; Amindavar, H.; Shamshirsaz, M.; Sepehry, N. Identification of temperature variation and vibration disturbance in impedance-based structural health monitoring using piezoelectric sensor array method. Struct. Health Monit. 2012, 11, 305–314.
[23]  Hong, D.S.; Nguyen, K.D.; Lee, I.C.; Kim, J.T. Temperature-compensated damage monitoring by using wireless acceleration-impedance sensor nodes in steel girder connection. Int. J. Distrib. Sens. Netw. 2012, 2012, 167120:1–167120:12.
[24]  Sun, F.P.; Chaudhry, Z.A.; Rogers, C.A.; Majmundar, M.; Liang, C. Automated Real-Time Structure Health Monitoring via Signature Pattern Recognition. Proceedings of Smart Structures and Materials 1995: Smart Structures and Integrated Systems, San Diego, FL, USA, 26 February 1995; pp. 236–247.
[25]  Park, G.; Kabeya, K.; Cudney, H.; Inman, D. Impedance-based structural health monitoring for temperature varying applications. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 1999, 42, 249–258.
[26]  Koo, K.; Park, S.; Lee, J.; Yun, C. Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects. J. Intell. Mater. Syst. Struct. 2009, 20, 367–377.
[27]  Yun, C.; Cho, S.; Park, H.; Min, J.; Park, J. Smart wireless sensing and assessment for civil infrastructure. Struct. Infrastruct. Eng. Maint. Manag. Life-Cycle Design Perform 2013, doi:10.1080/15732479.2013.769011.
[28]  Baptista, F.G.; Vieira Filho, J. A new impedance measurement system for PZT based structural health monitoring. EEE Trans. Instrum. Measur. 2009, 58, 3602–3608.
[29]  Baptista, F.G.; Vieira Filho, J. Optimal frequency range selection for PZT transducers in impedance-based SHM systems. In IEEE Sens J.; 2010; Volume 10, pp. 1297–1303.
[30]  Yang, Y.; Liu, H.; Annamdas, V.G.M.; Soh, C.K. Monitoring damage propagation using PZT impedance transducers. Smart Mater. Struct. 2009, 18, 045003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133