Radio Frequency Identification (RFID) technology faces the problem of message collisions. The coexistence of tags sharing the communication channel degrades bandwidth, and increases the number of bits transmitted. The window methodology, which controls the number of bits transmitted by the tags, is applied to the collision tree (CT) protocol to solve the tag collision problem. The combination of this methodology with the bit-tracking technology, used in CT, improves the performance of the window and produces a new protocol which decreases the number of bits transmitted. The aim of this paper is to show how the CT bit-tracking protocol is influenced by the proposed window, and how the performance of the novel protocol improves under different conditions of the scenario. Therefore, we have performed a fair comparison of the CT protocol, which uses bit-tracking to identify the first collided bit, and the new proposed protocol with the window methodology. Simulations results show that the proposed window positively decreases the total number of bits that are transmitted by the tags, and outperforms the CT protocol latency in slow tag data rate scenarios.
References
[1]
Wamba, S.F.; Wicks, A. RFID Deployment and Use in the Dairy Value Chain: Applications, Current Issues and Future Research Directions. Proceedings of the IEEE International Symposium on Technology and Society (ISTAS), Wollongong, NSW, Australia, 7–9 June 2010; pp. 172–179.
[2]
Moreno, A.; Angulo, I.; Perallos, A.; Landaluce, H.; García, I.J.; Azpilicueta, L.; Astrain, J.J.; Falcone, F.; Villadangos, J. IVAN: Intelligent van for the distribution of pharmaceutical drugs. Sensors 2012, 12, 6587–6609.
[3]
Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards Identification; Wiley & Sons: New York, NY, USA, 2010.
[4]
Vales-Alonso, J.; Bueno-Delgado, M.V.; Egea-López, E.; Alcaraz, J.J.; Pérez-Ma?ogil, J.M. On the optimal identification of tag sets in time-constrained RFID configurations. Sensors 2011, 11, 2946–2960.
[5]
Stanford, V. Pervasive computing goes the last hundred feet with RFID systems. IEEE Pervasive Comput. 2003, 2, 9–14.
[6]
Klair, D.K.; Chin, K.W.; Raad, R. A survey and tutorial of RFID anti-collision protocols. IEEE Commun. Surv. Tutor. 2010, 12, 400–421.
Vogt, H. Efficient Object Identificacition with Passive RFID Tags., Proceedings of the International Conference on Pervasive Computing, Zurich, Switzerland, 22–26 August 2002; Volume 2414, pp. 98–113.
[9]
Global, E. EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz–960 MHz. Version 1.2.0; 2008.
[10]
Hush, D.R.; Wood, C. Analysis of Tree Algorithms for RFID Arbitration. Proceedings of the IEEE International Symposium on Information Theory, Cambridge, MA, USA, 16–21 August 1998.
[11]
Law, C.; Lee, K.; Siu, K.Y. Efficient Memoryless Protocol for Tag Identification. Proceedings of the 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, Boston, MA, USA, 11 August 2000; pp. 75–84.
[12]
Bonuccelli, M.A.; Lonetti, F.; Martelli, F. Tree Slotted Aloha: A New Protocol for Tag Identification in RFID Networks. Proceedings of the International Symposium on a World of Wireless, Mobile and Multimedia Networks, Buffalo-Niagara Falls, NY, USA, 26–29 June 2006; pp. 1–6.
[13]
Wu, H.; Zeng, Y.; Feng, J.; Gu, Y. Binary tree slotted ALOHA for passive RFID tag anti-collision. IEEE Trans. Parallel Distrib. Syst. 2013, doi:10.1109/TPDS.2012.120.
[14]
Choi, J.H.; Lee, D.; Lee, H. Query tree-based reservation for efficient RFID tag anti-collision. IEEE Commun. Lett. 2007, 11, 85–87.
[15]
Zhou, F.; Jin, D.; Huang, C.; Fan, P. Optimize the Power Consumption of Passive Electronic Tags for Anti-collision Schemes. Proceedings 5th International Conference on ASIC, Beijing, China, 21–24 October 2003.
[16]
Jia, X.; Feng, Q.; Ma, C. An efficient anti-collision protocol for RFID tag identification. IEEE Commun. Lett. 2010, 14, 1014–1016.
[17]
Jia, X.; Feng, Q.; Lishan, Y. Stability analysis of an efficient anti-collision protocol for RFID tag identification. IEEE Trans. Commun. 2012, 60, 2285–2294.
[18]
Landaluce, H.; Perallos, A.; Zuazola, I. A fast RFID identification protocol with low tag complexity. IEEE Commun. Lett. 2013, 17, 1704–1706.
[19]
Landaluce, H.; Perallos, A.; Angulo, I. Influence of managing the number of tag bits transmitted on the query tree RFID collision resolution protocol. J. Commun. Softw. Syst. 2013, 9, 35–43.
[20]
Qian, C.; Liu, Y.; Ngan, H.; Ni, L. ASAP: Scalable collision arbitration for large RFID systems. IEEE Trans. Parallel Distrib. Syst. 2012, doi:10.1109/TPDS.2012.64.
[21]
Vogt, H. Efficient Object Identification with Passive RFID Tags. Proceedings of the International Conference on Pervasive Computing, Zürich, Switzerland, 26–28 August 2002; pp. 98–113.
[22]
Feng, B.; Li, J.-T.; Guo, J.-B.; Ding, Z.-H. ID-Binary Tree Stack Anticollision Algorithm for RFID. Proceedings of the IEEE Symposium on Computers and Communications (ISCC'06), Pula-Cagliari, Sardinia, Italy, 26–29 June 2006; pp. 207–212.
[23]
Kim, S.H.; Park, P.G. An efficient tree-based tag anti-collision protocol for RFID systems. IEEE Commun. Lett. 2007, 11, 449–451.