全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

A Universal Spring-Probe System for Reliable Probing of Electrochemical Lab-on-a-Chip Devices

DOI: 10.3390/s140100944

Keywords: spring-probe, reliability, probing system, electrochemical measurement, lab-on-a-chip

Full-Text   Cite this paper   Add to My Lib

Abstract:

For achieve sensitivity in lab-on-a-chip electrochemical detection, more reliable probing methods are required, especially for repeated measurements. Spring-probes are a promising candidate method which can replace needle-like probes and alligator clips that usually produce scratches on the surface of gold electrodes due to the strong physical contacts needed for electrochemical measurements. The superior reliability of amperometric measurements by a spring-probe system was compared with results by conventional probing methods. We demonstrated that a universal spring-probe system would be potentially suitable to achieve high performance in lab-on-a-chip devices using electrochemical detection.

References

[1]  Woolley, A.T.; Lao, K.; Glazer, A.N.; Mathies, R.A. Capillary electrophoresis chips with integrated electrochemical detection. Anal. Chem. 1998, 70, 684–688.
[2]  Choi, J.-W.; Oh, K.W.; Thomas, J.H.; Heineman, W.R.; Halsall, H.B.; Nevin, J.H.; Helmicki, A.J.; Henderson, H.T.; Ahn, C.H. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip. 2002, 2, 27–30.
[3]  Liu, R.H.; Yang, J.; Lenigk, R.; Bonanno, J.; Grodzinski, P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 2004, 76, 1824–1831.
[4]  Nyholm, L. Electrochemical techniques for lab-on-a-chip applications. Analyst 2005, 130, 599–605.
[5]  Wang, J. Portable electrochemical systems. TrAC Trends Anal. Chem. 2002, 21, 226–232.
[6]  Wang, J.; Pumera, M. Dual conductivity/amperometric detection system for microchip capillary electrophoresis. Anal. Chem. 2002, 74, 5919–5923.
[7]  Xu, L.; Du, J.; He, N.; Deng, Y.; Li, S.; Wang, T. Anodic stripping voltammetry for detection of dna hybridization with porous pseudo-carbon paste electrode by gold nanoparticle-catalyzed silver enhancement. J. Nanosci. Nanotechnol. 2009, 9, 2698–2703.
[8]  Joon, S.S.; Michael, J.R.; Chong, H.A. A large area nano-gap interdigitated electrode array on a polymer substrate as a disposable nano-biosensor. J. Micromech. Microeng. 2013, 23, 035002.
[9]  Plumeré, N.; Henig, J.; Campbell, W.H. Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: Application in an amperometric nitrate biosensor. Anal. Chem. 2012, 84, 2141–2146.
[10]  Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825.
[11]  Wikipedia. Gold. Avaiable online: http://en.wikipedia.org/wiki/Gold (accessed on 6 November 2013).
[12]  Johansson, A.; Janting, J.; Schultz, P.; Hoppe, K.; Hansen, I.; Boisen, A. SU-8 cantilever chip interconnection. J. Micromech. Microeng. 2006, 16, 314–319.
[13]  Gao, Y.; Chen, X.; Gupta, S.; Gillis, K.D.; Gangopadhyay, S. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells. Biomed. Microdevices 2008, 10, 623–629.
[14]  Claussen, J.C.; Kumar, A.; Jaroch, D.B.; Khawaja, M.H.; Hibbard, A.B.; Porterfield, D.M.; Fisher, T.S. Nanostructuring platinum nanoparticles on multilayered graphene petal nanosheets for electrochemical biosensing. Adv. Funct. Mater. 2012, 22, 3399–3405.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133