全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

Design and Mechanical Evaluation of a Capacitive Sensor-Based Indexed Platform for Verification of Portable Coordinate Measuring Instruments

DOI: 10.3390/s140100606

Keywords: coordinate metrology systems, portable coordinate measuring machine, indexed metrology platform

Full-Text   Cite this paper   Add to My Lib

Abstract:

During the last years, the use of Portable Coordinate Measuring Machines (PCMMs) in industry has increased considerably, mostly due to their flexibility for accomplishing in-line measuring tasks as well as their reduced costs and operational advantages as compared to traditional coordinate measuring machines (CMMs). However, their operation has a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification procedures. In this work the mechanical design of an indexed metrology platform (IMP) is presented. The aim of the IMP is to increase the final accuracy and to radically simplify the calibration, identification and verification of geometrical parameter procedures of PCMMs. The IMP allows us to fix the calibrated gauge object and move the measuring instrument in such a way that it is possible to cover most of the instrument working volume, reducing the time and operator fatigue to carry out these types of procedures.

References

[1]  Accuracy of Coordinate Measuring Machines—Characteristics and Their Reverification. VDI-VDE 2617-9; Institute for Innovation and Technology: Berlin, Germany, 2009; p. p. 20.
[2]  ASME B89.4.22: Date of Issuance: 8/12/2005—Performance Evaluation of Articulated Arm Coordinate Measuring Machines; American Society of Mechanical Engineers: New York, NY, USA, 2004; p. p. 56.
[3]  VDI/VDE 2617-10: Accuracy of Coordinate Measuring Machines—Characteristics and Their Checking—Acceptance and Reverification Tests of Laser Trackers; Institute for Innovation and Technology: Berlin, Germany, 2011; p. p. 22.
[4]  ASME B89.4.19: Performance Evaluation of Laser Based Spherical Coordinate Measurement Systems; American Society of Mechanical Engineers: New York, NY, USA, 2005; p. p. 76.
[5]  ISO/CD 10360-AA Geometrical Product Specifications (GPS)—Part AA: Acceptance and Reverification Tests for Articulated Arm Coordinate Measurement Machine (CMM); International Organization for Standardization: Geneva, Switzerland, 2013; p. p. 38.
[6]  Santolaria, J.; Brau, A.; Velázquez, J.; Aguilar, J.J. A self-centering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines. Meas. Sci. Technol. 2010, 21, 055101.
[7]  Kupiec, M. Coordianate measurment systems cmm and cma—Characteristc and methods of their accuracy evaluation. Adv. Sci. Technol. Res. J. 2012, 6, 17–23.
[8]  Shimojima, K.; Furutani, R.; Takamasu, K.; Araki, K. The Estimation Method of Uncertainty of Articulated Coordinate Measuring Machine. Proceedings of the XVII IMEKO World Congress, Dubrovnik, Croatia, 22–27 June 2003; pp. 411–415.
[9]  Piratelli-Filho, A.; Lesnau, G.R. Virtual spheres gauge for coordinate measuring arms performance test. Measurement 2010, 43, 236–244.
[10]  Piratelli-filho, A.; Henrique, F.; Fernandes, T.; Valdés, R. Application of virtual spheres plate for AACMMs evaluation. Precis. Eng. 2012, 36, 349–355.
[11]  González-Madruga, D.; González, E.C.; García, J.B.; Fernandez-Abia, A.I. Application of a force sensor to improve the reliability of measurement with articulated arm coordinate measuring machines. Sensors 2013, 13, 10430–10448.
[12]  Zheng, D.; Du, C.; Hu, Y. Research on optimal measurement area of flexible coordinate measuring machines. Measurement 2012, 45, 250–254.
[13]  Kovac, I.; Frank, A. Methods for Calibration and Testing of Flexible Arm Measuring Devices. Laser Metrology and Machine Performance: Proceedings of the 4th International Conference on Laser Metrology and Machine Performance; WIT Press: Southampton, UK, 1999; pp. 3–12.
[14]  Kovac, I.; Frank, A. Testing and calibration of coordinate measuring arms. Precis. Eng. 2001, 25, 90–99.
[15]  Santolaria, J.; Aguilar, J.-J.; Guillomía, D.; Cajal, C. A crenellated-target-based calibration method for laser triangulation sensors integration in articulated measurement arms. Robot. Comput. Integr. Manuf. 2011, 27, 282–291.
[16]  Santolaria, J.; Yagüe, J.-A.; Jiménez, R.; Aguilar, J.-J. Calibration-based thermal error model for articulated arm coordinate measuring machines. Precis. Eng. 2009, 33, 476–485.
[17]  Santolaria, J.; Aguilar, J.; Yague, J.; Pastor, J. Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines. Precis. Eng. 2008, 32, 251–268.
[18]  Ouyang, J.F.; Liu, W.L.; Sun, D.X.; Yan, Y.G. Laser Tracker Calibration Using Coordinate Measuring Machine. Available online: http://www.aspe.net/publications/Annual_2005/POSTERS/3METRO/3INSTR/1692.PDF (accessed on 31 December 2013).
[19]  S?adek, J.; Ostrowska, K.; G?ska, A. Modeling and identification of errors of coordinate measuring arms with the use of a metrological model. Measurement 2013, 46, 667–679.
[20]  S?adek, J.; Ostrowska, K.; Gacek, K. Kinematic Metrological Model of the Coordinate Measuring Arm (MCMA). Peoceedings of XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6?11 September 2009; pp. 1987–1992.
[21]  González-Madruga, D.; Cuesta, E.; Pati?o, H.; Barreiro, J.; Martinez-Pellitero, S. Evaluation of AACMM using the virtual circles method. Procedia Eng. 2013, 63, 243–251.
[22]  Brau, A.; Santolaria, J.; Asensio, I.; Aguilar, J.J. Mechanical Design of an Indexed Metrology Platform for Verification of Portable Coordinate Measuring Machines. Proceedings of the 5th Manufacturing Engineering Society International Conference, Zaragoza, Spain, 27–28 June 2013; pp. 1–8.
[23]  Anastasios, J.H.; Slocum, A.; Willoughby, P. Kinematic coupling interchangeability. Precis. Eng. 2004, 28, 1–15.
[24]  Barraja, M.; Vallance, R.R. Tolerance Allocation for Kinematic Couplings. Presented at the 2002 Summer Topical Meeting—Tolerance Modeling and Analysis, Charlotte, NC, USA, 15–16 July 2002.
[25]  Trapet, E.; Aguilar Martin, J.; Yague, J.; Spaan, H.; Zeleny, V. Self-centering probes with parallel kinematics to verify machine-tools. Precis. Eng. 2006, 30, 165–179.
[26]  Slocum, A. Kinematic couplings: A review of design principles and applications. Int. J. Mach. Tools Manuf. 2010, 50, 310–327.
[27]  Slocum, A. Kinematic couplings for precision fixturing—Part I: Formulation of design parameters. Precis. Eng. 1988, 10, 85–91.
[28]  Slocum, A. Design of three-groove kinematic couplings. Precis. Eng. 1992, 14, 67–76.
[29]  Slocum, A. Kinematic couplings for precision fixturing—Part II: Experimental determination of repeatability and stiffness. Precis. Eng. 1988, 10, 115–121.
[30]  Slocum, A.H. Precision Machine Design; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 43, p. p. 750.
[31]  Willoughby, P.; Anastasios, J.H.; Slocum, A. Experimental determination of kinematic coupling repeatability in industrial and laboratory conditions. J. Manuf. Syst. 2005, 24, 108–121.
[32]  Kim, J.G.; Lee, T.-J.; Park, N.-C.; Park, Y.-P.; Park, K.-S.; Lim, S.-C.; Ohm, W.-S. SAW-based capacitive sensor with hemispherical electrode for nano-precision gap measurement. Sens. Actuators A: Phys. 2010, 163, 54–60.
[33]  Kim, M.; Moon, W.; Yoon, E.; Lee, K. A new capacitive displacement sensor with high accuracy and long-range. Sens. Actuators A: Phys. 2006, 130-131, 135–141.
[34]  Kim, M.; Moon, W. A new linear encoder-like capacitive displacement sensor. Measurement 2006, 39, 481–489.
[35]  Search, H.; Journals, C.; Contact, A.; Iopscience, M.; Address, I.P. A long-range capacitive displacement sensor having micrometre resolution. Meas. Sci. Technol. 1993, 4, 801–807.
[36]  Huang, X.; Lee, J.-I.; Ramakrishnan, N.; Bedillion, M.; Chu, P. Nano-positioning of an electromagnetic scanner with a MEMS capacitive sensor. Mechatronics 2010, 20, 27–34.
[37]  Spaan, H.; Donker, R.; Widdershoven, I. ISARA 400: Enabling Ultra-Precision Coordinate Metrology. Proceedings of 10th International Symposium on Measurement and Quality Control, Osaka, Japan, 5–9 September 2010; pp. 3–6.
[38]  Brau, A.; Santolaria, J.; Gella, R.M.; Vila, L.; Aguilar, J.J. Técnica de Verificación de Instrumentos de Medición por Coordenadas Portátiles Basada en Plataforma Multi-Registro (in Spanish). Proceedings of XVIII Congreso Nacional de Ingeniería Mecánica, Ciudad Real, Spain, 3–5 November 2010; p. p. 9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133