全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

Remote Management for Multipoint Sensing Systems Using Hetero-Core Spliced Optical Fiber Sensors

DOI: 10.3390/s140100468

Keywords: optical fiber sensor, hetero-core optical fiber sensors, surface plasmon resonance sensors, bending sensors, multipoint sensing, remote management, internet standard protocol

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes the design and experimental verification of a multipoint sensing system with hetero-core spliced optical fiber sensors and its remote management using an internet-standard protocol. The study proposes two different types of design and conducts experiments to verify those systems’ feasibility. In order to manage the sensing systems remotely, the management method uses a standard operation and maintenance protocol for internet: the Simple Network Management Protocol is proposed. The purpose of this study is to construct a multipoint sensing system remote management tool by which the system can also determine the status and the identity of fiber optic sensors. The constructed sensing systems are verified and the results have demonstrated that the first proposed system can distinguish the responses from different hetero-core spliced optical fiber sensors remotely. The second proposed system shows that data communications are performed successfully while identifying the status of hetero-core spliced optical fiber sensors remotely.

References

[1]  Hadjidj, A.; Souil, M.; Bouabdallah, A.; Challal, Y.; Owen, H. Wireless sensor networks for rehabilitation applications: Challenges and opportunities. J. Netw. Comput. Appl. 2013, 36, 1–15.
[2]  Alemdar, H.; Ersoy, C. Wireless sensor networks for healthcare: A survey. Comput. Netw. 2010, 54, 2688–2710.
[3]  Abe, N.; Shinomiya, N.; Teshigawara, Y. Optical Fiber Sensor Network Integrating Communication and Sensing Functions Using Hetero-core Spliced Fiber Optic Sensors. Proceedings of the 23nd International Conference on Advanced Information Networking and Applications, Bradford, UK, 26–29 May 2009; pp. 749–757.
[4]  Liao, W.H.; Yang, H.C. A power-saving data storage scheme for wireless sensor networks. J. Netw. Comput. Appl. 2012, 35, 818–825.
[5]  Sahoo, P.K.; Sheu, J.P.; Chang, Y.C. Performance evaluation of wireless sensor network with hybrid channel access mechanism. J. Netw. Comput. Appl. 2009, 32, 878–888.
[6]  Tadayon, N.; Khoshroo, S.; Askari, E.; Wang, H.; Michel, H. Power management in SMAC-based energy-harvesting wireless sensor networks using queuing analysis. J. Netw. Comput. Appl. 2013, 36, 1008–1017.
[7]  Zhu, C.; Zheng, C.; Shu, L.; Han, G. A survey on coverage and connectivity issues in wireless sensor networks. J. Netw. Comput. Appl. 2012, 35, 619–632.
[8]  Rizvi, S.; Qureshi, H.K.; Khayam, S.A.; Rakocevic, V.; Rajarajan, M. A1: An energy efficient topology control algorithm for connected area coverage in wireless sensor networks. J. Netw. Comput. Appl. 2012, 35, 597–605.
[9]  King, D.; Lyons, W.B.; Flanagan, C.; Lewis, E. A multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition techniques. Sens. Actuators A Phys. 2004, 115, 293–302.
[10]  Rahman, K.C. A survey on sensor network. J. Comput. Inf. Technol. 2010, 1, 76–87.
[11]  Corke, P.; Wark, T.; Jurdak, R.; Hu, W.; Valencia, P.; Moore, D. Environmental wireless sensor network. Proc. IEEE 2010, 98, 1903–1917.
[12]  Watanabe, K.; Tajima, K.; Kubota, Y. Macrobending characteristics of hetero-core splice fiber optic sensor for displacement and liquid detection. IEICE Trans. Electron. 2000, E83-C, 309–314.
[13]  Iga, M.; Seki, A.; Kubota, Y.; Watanabe, K. Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sens. Actuators B Chem. 2003, 106, 363–368.
[14]  Nishiyama, M.; Sasaki, H.; Watanabe, K. Performance characteristic of wearable embedded hetero-core fiber sensors for unconstrained motion analyses. IEEE Trans. Instrum. Meas. 2007, 43, 1075–1081.
[15]  Nishiyama, M.; Sasaki, H.; Nose, S.; Takami, K.; Watanabe, K. Smart pressure sensing mats with embedded hetero-core fiber optic nerve sensors. Mater. Manuf. Process. 2010, 25, 264–267.
[16]  Dinusha Rathnayaka, A.J.; Potdar, V.M. Wireless sensor network transport protocol: A critical review. J. Netw. Comput. Appl. 2013, 36, 134–146.
[17]  Goh, L.S.; Ichimiya, T.; Watanabe, K.; Shinomiya, N. A Hetero-Core Spliced Optical Fiber Sensor Network for Remote Monitoring of Agricultural Environment. Proceedings of the 2012, 26th International Conference on Advanced Information Networking and Applications Workshops, Fukuoka, Japan, 26–29 March 2012; pp. 418–422.
[18]  Vancea, C.M.; Dobrota, V. Enabling SNMP for IEEE 802.15.4: A Practical Architecture. Proceedings of the 6th RoEduNet International Conference “Networking in Education and Research”, Craiova, Romania, 23–24 November 2007; pp. 49–53.
[19]  Takagi, K.; Watanabe, K. Near infrared characterization of hetero-core optical fiber SPR sensors coated with Ta2O5 film and their applications. Sensors 2012, 12, 2208–2218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133