The physical properties and the effect of effective surface area (ESA) on the sensing properties of tin dioxide [SnO 2] thin films in air and propane [C 3H 8] atmosphere as a function of operating temperature and gas concentration have been studied in this paper. SnO 2 thin films with different estimated thicknesses (50, 100 and 200 nm) were deposited on glass substrates by the chemical spray technique. Besides, they were prepared at two different deposition temperatures (400 and 475 °C). Tin chloride [SnCl 4?5H 2O] with 0.2 M concentration value and ethanol [C 2H 6O] were used as tin precursor and solvent, respectively. The morphological, and structural properties of the as-prepared films were analyzed by AFM and XRD, respectively. Gas sensing characteristics of SnO 2 thin solid films were measured at operating temperatures of 22, 100, 200, and 300 °C, and at propane concentration levels (0, 5, 50, 100, 200, 300, 400, and 500 ppm). ESA values were calculated for each sample. It was found that the ESA increased with the increasing thickness of the films. The results demonstrated the importance of the achieving of a large effective surface area for improving gas sensing performance. SnO 2 thin films deposited by spray chemical were chosen to study the ESA effect on gas sensing properties because their very rough surfaces were appropriate for this application.
References
[1]
Malyshev, V.V.; Pislyakov, A.V. Investigation of gas-sensitivity of sensor structures to carbon monoxide in a wide range of temperature, concentration and humidity of gas medium. Sens. Actuators B Chem. 2007, 123, 71–81.
[2]
Lee, D.-S.; Lim, J.-W.; Lee, S.-M.; Huh, J.-S.; Lee, D.-D. Fabrication and characterization of micro-gas sensor for nitrogen oxides gas detection. Sens. Actuators B Chem. 2000, 64, 31–36.
[3]
Desai, R.R.; Lakshminarayana, D.; Patel, P.B.; Panchal, C.J. Indium sesquitelluride (In2Te3) thin film gas sensor for detection of carbon dioxide. Sens. Actuators B Chem. 2005, 107, 523–527.
[4]
Vaishampayan, M.V.; Deshmukh, R.G.; Walke, P.; Mulla, I.S. Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide gas sensor. Mater. Chem. Phys. 2008, 109, 230–234.
[5]
Das, S.; Chakraborty, S.; Parkash, O.; Kumar, D.; Bandyopadhyay, S.; Samudrala, S.K.; Sen, A.; Maiti, H.S. Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta 2008, 75, 385–389.
[6]
Lupan, O.; Chai, G.; Chow, L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron. Eng. 2008, 85, 2220–2225.
[7]
Angelis, L.; Riva, R. Selectivity and stability of a tin oxide sensor for methane. Sens. Actuators B Chem. 1995, 28, 25–29.
[8]
Carbajal-Franco, G.; Tiburcio-Silver, A.; Domínguez, J.M.; Sánchez-Juárez, A. Thin film tin oxide-based propane gas sensors. Thin Solid Films 2000, 373, 141–144.
[9]
Mandelis, A.; Christofides, C. Physics, Chemistry, and Technology of Solid State Gas Sensor Devices. In Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications; Winefordner, J.D., Ed.; JohnWiley & Sons, Inc.: New York, NY, USA,, 1993; p. p. 125.
[10]
Korotchenko, G.; Brynzari, V.; Dmitriev, S. SnO2 films for thin film gas sensor design. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 1999, 63, 195–204.
[11]
Shen, Y.; Yamazaki, T.; Liu, Z.; Jin, C.; Kikuta, T.; Nakatani, N. Porous SnO2 sputtered films with high H2 sensitivity at low operation temperature. Thin Solid Films 2008, 516, 5111–5117.
[12]
Salehi, A.; Gholizade, M. Gas-sensing properties of indium-doped SnO2 thin films with variations in indium concentration. Sens. Actuators B Chem. 2003, 89, 173–179.
[13]
Brousse, T.; Schleich, D.M. Sprayed and thermally evaporated SnO2 thin films for ethanol sensors. Sens. Actuators B Chem. 1996, 31, 77–79.
[14]
Rella, R.; Serra, A.; Siciliano, P.; Vasanelli, L.; de, G.; Licciulli, A. CO sensing properties of SnO2 thin films prepared by the sol-gel process. Thin Solid Films 1997, 304, 339–343.
[15]
Korotcenkov, G.; Brinzari, V.; Schwank, J.; DiBattista, M.; Vasiliev, A. Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens. Actuators B Chem. 2001, 77, 244–252.
[16]
Sze, S.M. Semiconductor Sensors; John Wiley & Sons, Inc.: New York, NY, USA, 1993; p. p. 383.
[17]
Gonzalez, R.; Woods, R. Digital Image Processing; Addison Wesley: New York, NY, USA, 1992; pp. 414–428.
[18]
Velasco, F.R.D. Thresholding using the ISODATA clustering algorithm. IEEE Trans. Syst. Man Cybern. 1980, 10, 771–774.
[19]
Powder Diffraction File. In Joint Committee on Powder Diffraction Standards; ASTM: Philadelphia, PA, USA, 1967. Card 36-1451.
[20]
Korotcenkov, G.; Cornet, A.; Rossinyol, E.; Arbiol, J.; Brinzari, V.; Blinov, Y. Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution. Thin solid films 2005, 471, 310–319.