全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis

DOI: 10.3390/s130608013

Keywords: condition diagnosis, relative crossing information (RCI), pseudo Wigner-Ville distribution (PWVD), ant colony optimization (ACO), synthesizing symptom parameter (SSP)

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well.

References

[1]  Cusidó, J.; Romeral, L.; Ortega, J.; Garcia, A.; Riba, J. Signal injection as a fault detection technique. Sensors 2011, 11, 3356–3380.
[2]  El Kamel Oumaamar, M.; Hadjami, M.; Boucherma, M.; Razik, H. Induction motor diagnosis using line neutral voltage signatures. IEEE Trans. Ind. Electron. 2009, 11, 4581–4591.
[3]  Ceban, A.; Pusca, R.; Romary, R. Study of rotor faults in induction motors using external magnetic field analysis. IEEE Trans. Ind. Electron. 2012, 3, 2082–2093.
[4]  Georgakopoulos, I.P.; Mitronikas, E.D.; Safacas, A.N. Detection of induction motor faults in inverter drives using inverter input current analysis. IEEE Trans. Ind. Electron. 2011, 9, 4365–4373.
[5]  Pusca, R.; Romary, R.; Ceban, A.; Brudny, J.-F. An online universal diagnosis procedure using two external flux sensors applied to the ac electrical rotating machines. Sensors 2010, 10, 10448–10466.
[6]  Pacas, M.; Villwock, S.; Dietrich, R. Bearing damage detection in permanent magnet synchronous machines. Proceedings of the IEEE Energy Conversion Congress and Exposition, 2009 (ECCE 2009), San Jose, CA, USA, 20– 24 September 2009; pp. 1098–1103.
[7]  Stack, J.R.; Habetlerand, T.G.; Harley, R.G. Fault-signature modeling and detection of inner-race bearing faults. IEEE Trans. Ind. Appl. 2006, 42, 61–68.
[8]  Stack, J.R.; Habetler, T.G.; Harley, R.G. An amplitude modulation detector for fault diagnosis in rolling element bearing. IEEE Trans. Ind. Electron. 2004, 10, 1097–1102.
[9]  Bianchini, C.; Immovilli, C.; Cocconcelli, M.; Rubini, R.; Bellini, A. Fault detection of linear bearings in brushless AC linear motors by vibration analysis. IEEE Trans. Ind. Electron. 2011, 5, 1684–1694.
[10]  Rajagopalan, S.; Restrepo, J.A.; Aller, J.M.; Habetler, T.G.; Harley, R.G. Nonstationary motor fault detection using recent quadratic time–frequency representations. IEEE Trans. Ind. Appl. 2008, 44, 735–744.
[11]  Xue, S.; Cheng, H.; Yang, Y. Application of pseudo Wigner-Ville distribution to fault diagnosis in motor bearing. Mechanical Engineering & Automation. 2008, 4, 98–100.
[12]  Baydar, N.; Ball, A. A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville distribution. Mech. Syst. Signal Process 2001, 11, 1091–1107.
[13]  Sander, C.J.; Heyns, P.S.; Schoombie, W. Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions. Mech. Syst. Signal Process 2002, 11, 1005–1024.
[14]  Rosero, J.A.; Romeral, L.; Ortega, J.A.; Rosero, E. Short-circuit detection by means of empirical mode decomposition and Wigner-Ville distribution for PMSM running under dynamic condition. IEEE Trans. Ind. Electron. 2009, 11, 4534–4547.
[15]  Antonino-Daviu, J.A.; Climente-Alarcón, V.; Pons-Llinares, J.; Pineda-Sánchez, M.; Jover-Rodriguez, P.; Arkkio, A. Application of TFD tools for the tracing of eccentricity-related components in induction machines. Proceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society (IECON 2009), Porto, Portugal, 3– 5 November 2009; Volume 11, pp. 1039–1044.
[16]  Rajagopalan, S.; Restrepo, J.A.; Aller, J.M.; Habetler, T.G.; Harley, R.G. Wigner-Ville distributions for detection of rotor faults in brushless DC (BLDC) motors operating under non-stationary conditions. Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Vienna, Austria, 7– 9 September 2005; Volume 9, pp. 313–319.
[17]  Chen, P.; Toyota, T. Fuzzy Diagnosis and Fuzzy Navigation for Plant Inspection and Diagnosis Robot. Proceedings of the Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, Yokohama, Japan, 20– 24 March 1995; Volume 1, pp. 185–193.
[18]  Blum, C. Beam-ACO—Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Comput. Oper. Res. 2005, 32, 1565–1591.
[19]  Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1997, 4, 53–66.
[20]  Socha, K.; Knowles, J.; Sampels, M. A MAX-MIN ant system for the university timetabling problem. Proceedings of the Third International Workshop on Ant Algorithms, Brussels, Belgium, 12– 14 September 2002; Dorigo, M., Di Caro, G., Sampels, M., Eds.; Ant Algorithms, Lecture Notes in Computer Science; Volume 2463, pp. 1–13.
[21]  Liu, B.; Abbass, H.A.; McKay, B. Density-based heuristic for rule discovery with ant-miner. Proceedings of the 6th Australasia–Japan Joint Workshop on Intelligent and Evolutionary Systems, Canberra, Australia, 30 November– 1 December 2002; pp. 180–184.
[22]  Martens, D.; Backer, M.D.; Haesen, R.; Vanthienen, J.; Snoeck, M.; Baesens, B. Classification With Ant Colony Optimization. IEEE Trans. Evol. Comput. 2007, 10, 651–665.
[23]  Abraham, A.; Ramos, V. Web usage mining using artificial ant colony clustering. In The Congress on Evolutionary Computation; IEEE Press: Piscataway, NJ, USA, 2003; pp. 1384–1391.
[24]  Handl, J.; Knowles, J.; Dorigo, M. Ant-based clustering and topographic mapping. Artif. Life 2006, 35–61.
[25]  Blodt, M.; Chabert, M.; Regnier, J.; Faucher, J. Mechanical load fault detection in induction motors by stator current time–frequency analysis. IEEE Trans. Ind. Appl. 2006, 42, 1454–1463.
[26]  Chen, P.; Taniguchi, M.; Toyota, T.; He, Z.J. Fault diagnosis method for machinery in unsteady operating condition by instantaneous power spectrum and genetic programming. Mech. Syst. Signal Process. 2005, 1, 179–194.
[27]  Wang, H.; Chen, P. Fuzzy diagnosis method for rotating machinery in variable rotating speed. IEEE Sens. J. 2011, 1, 23–34.
[28]  Bendat, J.S. Probability Functions for Random Responses—Prediction of Peaks, Fatigue Damage, and Catastrophic Failures—NASA Report CR-33; NASA: NASA Headquarters: Washington, DC, USA, 1969.
[29]  Dorigo, M.; Stützle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004.
[30]  Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 338–353.
[31]  Dubois, D.; Prade, H. Possibility Theory: An Approach to Computerized Processing; Plenum Press: New York, NY, USA, 1988.
[32]  Chen, P.; Toyota, T. Sequential fuzzy diagnosis for plant machinery. JSME Int. J. C. 2003, 9, 1121–1129.
[33]  Li, K.; Chen, P.; Wang, S.M. An intelligent diagnosis method for rotating machinery using least squares mapping and a fuzzy neural network. Sensors 2012, 5, 5919–5939.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133