The classes and concentrations of volatile organic compounds (VOC) released from fresh and decaying strawberries were investigated and compared. In this study, a total of 147 strawberry volatiles were quantified before and after nine days of storage to explore differences in the aroma profile between fresh strawberries (storage days (SRD) of 0, 1, and 3) and those that had started to decay (SRD = 6 and 9). In terms of concentration, seven compounds dominated the aroma profile of fresh strawberries (relative composition (RC) up to 97.4% by mass, sum concentration): (1) ethyl acetate = 518 mg?m ?3, (2) methyl acetate = 239 mg?m ?3, (3) ethyl butyrate = 13.5 mg?m ?3, (4) methyl butyrate = 11.1 mg?m ?3, (5) acetaldehyde = 24.9 mg?m ?3, (6) acetic acid = 15.2 mg?m ?3, and (7) acetone = 13.9 mg?m ?3. In contrast, two alcohols dominated the aroma profile of decayed samples (RC up to 98.6%): (1) ethyl alcohol = 94.2 mg?m ?3 and (2) isobutyl alcohol = 289 mg?m ?3. Alternatively; if the aroma profiles are re-evaluated by summing odor activity values (ΣOAV); four ester compounds ((1) ethyl butyrate (6,160); (2) ethyl hexanoate (3,608); (3) ethyl isovalerate (1,592); and (4) ethyl 2-methylbutyrate (942)) were identified as the key constituents of fresh strawberry aroma (SRD-0). As the strawberries began to decay; isobutyl alcohol recorded the maximum OAV of 114 (relative proportion (RP) (SRD = 6) = 58.3%). However, as the decay process continued, the total OAV dropped further by 3 to 4 orders of magnitude—decreasing to 196 on SRD = 6 to 7.37 on SRD = 9. The overall results of this study confirm dramatic changes in the aroma profile of strawberries over time, especially with the onset of decay.
References
[1]
Du, X.; Plotto, A.; Baldwin, E.; Rouseff, R. Evaluation of volatiles from two subtropical strawberry cultivars using GC-olfactometry, GC-MS odor activity values, and sensory analysis. J. Agric. Food Chem. 2011, 59, 12569–12577, doi:10.1021/jf2030924. 22026593
[2]
Ulrich, D.; Hoberg, E.; Rapp, A. Analysis of strawberry flavor-discrimination of aroma types by quantification of volatile compounds. Z. Lebensm. Unters. Forsch. A. 1997, 205, 218–223, doi:10.1007/s002170050154.
[3]
Pickenhagen, W. Enantioselectivity in odor perception. ACS. Symp. Ser. 1989, 388, 151–157.
[4]
Werkhoff, P.; Brennecke, S.; Bretschneider, W. Fortschritte bei der dhirospezifischen analyse natürlicher riech-und Aromastoffe. Ache. Mikrobiol. Technol. Lebensm. 1991, 13, 129–152. (in German).
[5]
Werkhoff, P.; Brennecke, S.; Bretschneider, W.; Güntert, M.; Hopp, R.; Surburg, H. Chirospecific analysis in essential oil, fragrance and flavor research. Z. Lebensm. Unters. Forsch. 1993, 196, 307–328, doi:10.1007/BF01197930.
[6]
Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 1–39.
[7]
Schieberle, P.; Hofmann, T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. J. Agric. Food Chem. 1997, 45, 227–232, doi:10.1021/jf960366o.
[8]
Larsen, M.; Poll, L.; Olsen, C.E. Evaluation of the aroma composition of some strawberry (FragariaananassaDuch) cultivars by use of odour threshold values. Z. Lebensm. Unters. Forsch. 1992, 195, 536–539, doi:10.1007/BF01204558.
[9]
Lambert, Y.; Demazeau, G.; Largeteau, A.; Bouvier, J.-M. Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chem. 1999, 67, 7–16, doi:10.1016/S0308-8146(99)00084-9.
[10]
Jetti, R.R.; Yang, E.; Kurnianta, A.; Finn, C.; Qian, M.C. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J. Food Sci. 2007, 72, 487–496, doi:10.1111/j.1750-3841.2007.00445.x.
[11]
Li, H.; Tao, Y.-S.; Wang, H.; Zhang, L. Impact odorants of Chardonnay dry white wine from Changli County (China). Evaluation of fruit aroma quality: Comparison between gas chromatography-olfactometry (GC-O) and odour activity value (OAV) aroma patterns of strawberries. Eur. Food Res. Technol. 2008, 227, 287–292, doi:10.1007/s00217-007-0722-9.
[12]
Nuzzi, M.; Scalzo, R.L.; Testoni, A.; Rizzolo, A. Evaluation of fruit aroma quality: Comparison between gas chromatography-olfactometry (GC-O) and odour activity value (OAV) aroma patterns of strawberries. Food Anal. Methods 2008, 1, 270–282, doi:10.1007/s12161-008-9039-y.
[13]
Szulejko, J.E.; Kim, Y.-H.; Kim, K.-H. Prediction of response factors for the quantitation of volatile organic compounds based on effective carbon number (ECN) approach with TD/GC/QMS at 70 eV EI. in prep. .
[14]
Kim, Y.-H.; Kim, K.-H. A Statistical Estimation Approach for Quantitative Concentrations of “Compounds Lacking Authentic Standards/Surrogates (CLASS)” based on Linear Correlations between Directly Measured Detector Responses and Carbon Number (CN) of Different Functional Groups. Sci. World J. 2013, doi:10.1155/2013/241585.
[15]
Kim, Y.-H.; Kim, K.-H. Novel approach to test the relative recovery of liquid-phase standard in sorbent-tube analysis of gaseous volatile organic compounds. Anal. Chem. 2012, 84, 4126–4139, doi:10.1021/ac300334b. 22468653
[16]
Lacey, R.E.; Redwine, J.S.; Parnell, C.B., Jr. Particulate matter and ammonia emission factors for tunnel-ventilated broiler production houses in the southern U.S. Trans. ASAE 2003, 46, 1203–1214.
[17]
Jo, S.-H.; Kim, K.-H.; Shon, Z.-H.; Parker, D. Identification of control parameters for the sulfur gas storability with bag sampling methods. Anal. Chim. Acta. 2012, 738, 51–58, doi:10.1016/j.aca.2012.06.010. 22790700
[18]
Scheiner, D. Determination of ammonia and Kjeldahl nitrogen by indophenol method. Water Res. 1976, 10, 31–36, doi:10.1016/0043-1354(76)90154-8.
[19]
Berg, B.R.; Abdullah, M.I. An automatic method for the determination of ammonia in sea water. Water Res. 1977, 11, 637–638, doi:10.1016/0043-1354(77)90099-9.
[20]
Kim, K.-H.; Park, S.-Y. A comparative analysis of malodor samples between direct (olfactometry) and indirect (instrumental) methods. Atmos. Environ. 2008, 42, 5061–5070, doi:10.1016/j.atmosenv.2008.02.017.
[21]
Forney, C.F.; Kalt, W.; Jordan, M.A. The composition of strawberry aroma is influenced by cultivar, maturity, and storage. HortScience 2000, 35, 1022–1026.
[22]
Pyysalo, T.; Honkanen, E.; Hirvi, T. Volatiles of wild strawberries, Fragaria vesca L., Compared to those of cultivated berries, Fragaria X ananassa cv. Senga Sengana. J. Agric. Food Chem. 1979, 27, 19–22, doi:10.1021/jf60221a042.
[23]
Schreier, P. Quantitative composition of volatile constituents in cultivated strawberries, Fragariaananassa cv. Sengasengana, sengalitessa and sengagourmella. J. Sci. Food Agric. 1980, 31, 487–494, doi:10.1002/jsfa.2740310511.
[24]
Douillard, C.; Guichard, E. The aroma of strawberry (Fragariaananassa): Characterization of some cultivars and influence of freezing. J. Sci. Food Agric. 1990, 50, 517–531, doi:10.1002/jsfa.2740500410.
[25]
Leonardos, G.; Kendall, D.; Barnard, N. Odor threshold determinations of 53 odorant chemicals. J. Air Pollut. Control Ass. 1969, 19, 91–95, doi:10.1080/00022470.1969.10466465.
[26]
Nagata, Y. Measurement of odor threshold by triangle odor bag method. In Odor Measurement Review; Office of Odor, Noise and Vibration, Environmental Management Bureau, Ministry of Environment: Tokyo, Japan, 2003; pp. 118–127. (in Japanese).
[27]
Rothe, M.; Thomas, B. Aromastoffe des brotes: Versuch einer auswertung chemischer geschmacksanalysen mit hilfe des schwellenwertes. Z. Lebensm. Unters. Forsch. 1963, 119, 302–310. (in German), doi:10.1007/BF01891082.
[28]
Schulbach, K.F.; Rouseff, R.L.; Sims, C.A. Relating descriptive sensory analysis to gas chromatography/olfactometry ratings of fresh strawberries using partial least squares regression. J. Food Sci. 2004, 69, 273–277.
[29]
Schieberle, P.; Hofmann, T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. J. Agric. Food Chem. 1997, 45, 227–232, doi:10.1021/jf960366o.
[30]
Aznar, M.; López, R.; Cacho, J.F.; Ferreira, V. Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC Fractions. J. Agric. Food Chem. 2001, 49, 2924–2929, doi:10.1021/jf001372u. 11409988
[31]
Buchbauer, G.; Jirovetz, L.; Nikiforov, A. Comparative investigation of essential clover flower oils from Austria using gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and gas chromatography-olfactometry. J. Agric. Food Chem. 1996, 44, 1827–1828, doi:10.1021/jf9506850.
[32]
Cai, L.; Koziel, J.A.; Lo, Y.-C.; Hoff, S.J. Characterization of volatile organic compounds and odorants associated with swine barn particulate matter using solid-phase microextraction and gas chromatography-mass spectrometry-olfactometry. J. Chromatogr. A 2006, 1102, 60–72, doi:10.1016/j.chroma.2005.10.040. 16297922
[33]
Clausen, P.A.; Knudsen, H.N.; Larsen, K.; Kofoed-S?rensen, V.; Wolkoff, P. Use of thermal desorption gas chromatography-olfactometry/mass spectrometry for the comparison of identified and unidentified odor active compounds emitted from building products containing linseed oil. J. Chromatogr. A. 2008, 1210, 203–211, doi:10.1016/j.chroma.2008.09.073. 18922536
[34]
Larsen, M.; Poll, L. Odour thresholds of some important aroma compounds in strawberries. Z. Lebensm. Unters. Forsch. 1992, 195, 120–123, doi:10.1007/BF01201770.
[35]
Semmelroch, P.; Grosch, W. Analysis of roasted coffee powders and brews by gas chromatography-olfactometry of headspace samples. Lebensmittel-Wissenschaft und-Technologie 1995, 28, 310–313.
[36]
Komes, D.; Ulrich, D.; Lovric, T. Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje. Eur. Food Res. Technol. 2006, 222, 1–7, doi:10.1007/s00217-005-0094-y.
[37]
Arora, G.; Cormier, F.; Lee, B. Analysis of odor-active volatiles in Cheddar cheese headspace by multidimensional GC/MS sniffing. J. Agric. Food Chem. 1995, 26, 187–191.
[38]
Carpino, S.; Mallia, S. Personal Communication; Consorzio Ricerca Filiera Lattiero-Casearia: Ragusa, Italy.
[39]
Kubícková, J.; Grosch, W. Evaluation of potent odorants of Camembert cheese by dilution and concentration techniques. Int. Dairy J. 1997, 7, 65–70, doi:10.1016/S0958-6946(96)00044-1.
[40]
Kubícková, J.; Grosch, W. Evaluation of flavor compounds of Camembert cheese. Int. Dairy J. 1998, 8, 11–16, doi:10.1016/S0958-6946(98)00015-6.
[41]
Le Quéré, J.L.; Septier, C.; Demaiziéres, D.; Salles, C. Identification and Sensory Evaluation of the Character-Impact Compounds of Goat Cheese Flavor. Proceedings of the 8th Weurman Flavour Research Symposium, Reading, UK, 23–26 July 1996; pp. 325–330.
[42]
Moio, L.; Addeo, F. Grana Padano cheese aroma. J. Dairy Res. 1998, 65, 317–333, doi:10.1017/S0022029997002768.
[43]
Moio, L.; Dekimpe, J.; Etiévant, P.X.; Addeo, F. Volatile flavor compounds of water buffalo Mozzarella cheese. Ital. J. Food Sci. 1993, 5, 57–68.
[44]
Moio, L.; Piombino, P.; Addeo, F. Odour-Impact compounds in Gorgonzola cheese. J. Dairy Res. 2000, 67, 273–285, doi:10.1017/S0022029900004106. 10840681
[45]
Rychlik, M.; Bosset, J.O. Flavor and off-flavour compounds of Swiss Gruyére cheese. Evaluation of potent odorants. Int. Dairy J. 2001, 11, 895–901, doi:10.1016/S0958-6946(01)00108-X.
[46]
Christensen, K.R.; Reineccius, G.A. Aroma extract dilution analysis of aged Cheddar cheese. J. Food Sci. 1995, 60, 218–220, doi:10.1111/j.1365-2621.1995.tb05641.x.
[47]
Milo, C.; Reineccius, G.A. Identification and quantification of potent odorants in regular-fat and low-fat mild Cheddar cheese. J. Agric. Food Chem. 1997, 45, 3590–3594, doi:10.1021/jf970152m.
[48]
Preininger, M.; Grosch, W. Evaluation of key odorants of the neutral volatiles of Emmentaler cheese by the calculation of odour activity values. LWT-Food Sci & Technol. 1994, 27, 237–244, doi:10.1006/fstl.1994.1048.
[49]
Preininger, M.; Rychlik, M.; Grosch, W. Potent odorants of the neutral volatile fraction of Swiss cheese (Emmentaler). Develop. Food Sci. 1994, 35, 267–270.
[50]
van Gemert, L.J. Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners: Huizen, the Netherlands, 2003.
[51]
Devos, M.; Patte, F.; Rouault, J.; Laffort, P.; van Gemert, L.J. Standardized Human Olfactory Thresholds; IRL Press at Oxford University Press: New York, NY, USA, 1990.
[52]
Ruth, J.H. Odor thresholds and irritation levels of several chemical substances: A review. Am. Ind. Hyg. Assoc. J. 1986, 47, 142–151.
[53]
Woodfield, M.; Hall, D. Odour Measurement and Control—An Update; AEA Technology: Abingdon, Oxfordshire, UK, 1994.
[54]
Duerksen-Hughes, P.J.; Yang, J.; Ozcan, O. p53 induction as a genotoxic test for twenty-five chemicals undergoing in vivo carcinogenicity testing. Enviro Health Pers. 1999, 107, 805, doi:10.1289/ehp.99107805.
[55]
Chicago Evans, C.D.; Moser, H.A.; List, C.D. Odor and flavor responses to additives in edible oils. J. Am. Oil Chem. Soc. 1971, 48, 495–498, doi:10.1007/BF02544669.
[56]
Occupational Health Guideline for Ethyl Ether; Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health (NIOSH): Atlanta, GA, USA, 1978; pp. 1–5.
[57]
Amoore, J.E.; Hautala, E. Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J. Appl. Toxicol. 1983, 3, 272–290, doi:10.1002/jat.2550030603. 6376602
[58]
Schiffman, S.S.; Bennett, J.L.; Raymer, J.H. Quantification of odors and odorants from swine operations in North Carolina. Agr. Forest Meteorol. 2001, 108, 213–240, doi:10.1016/S0168-1923(01)00239-8.
[59]
The Science of Smell Part 1: Odor Perception and Physiological Response. Available online: http://www.extension.iastate.edu/Publications/pm1963A.pdf (accessed on 1 May 2013).