In this paper, a reflective photonic crystal fiber (PCF) sensor probe for temperature measurement has been demonstrated both theoretically and experimentally. The performance of the device depends on the intensity modulation of the optical signal by liquid mixtures infiltrated into the air holes of commercial LMA-8 PCFs. The effective mode field area and the confinement loss of the probe are both proved highly temperature-dependent based on the finite element method (FEM). The experimental results show that the reflected power exhibits a linear response with a temperature sensitivity of about 1 dB/°C. The sensor probe presents a tunable temperature sensitive range due to the concentration of the mixture components. Further research illustrates that with appropriate mixtures of liquids, the probe could be developed as a cryogenic temperature sensor. The temperature sensitivity is about 0.75 dB/°C. Such a configuration is promising for a portable, low-power and all-in-fiber device for temperature or refractive index monitoring in chemical or biosensing applications.
References
[1]
Kirkendall, C.; Dandridge, A. Overview of high performance fibre-optic sensing. J. Phys. D Appl. Phys. 2004, 37, 197–216.
[2]
Culshaw, B. Optical fiber sensor technologies: opportunities and-perhaps-pitfalls. J. Lightwave Technol. 2004, 22, 39–50.
[3]
Knight, J. Photonic crystal fibres. Nature 2003, 424, 847–851.
[4]
Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362.
[5]
Petropoulos, P.; Monro, T.; Belardi, W.; Furusawa, K.; Lee, J.; Richardson, D. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber. Opt. Lett. 2001, 26, 1233–1235.
[6]
Birks, T.; Mogilevtsev, D.; Knight, J.; Russell, P. Dispersion compensation using single-material fibers. IEEE Photonics Technol. Lett. 1999, 11, 674–676.
[7]
Knight, J.; Birks, T.; Cregan, R.; Russell, P.; Sandro, P. Large mode area photonic crystal fibre. Electron. Lett. 1998, 34, 1347–1348.
[8]
Kuhlmey, B.; Eggleton, B.; Wu, D. Fluid-filled solid-core photonic bandgap fibers. J. Lightwave Technol. 2009, 27, 1617–1630.
Larsen, T.; Bjarklev, A.; Hermann, D.; Broeng, J. Optical devices based on liquid crystal photonic bandgap fibres. Opt. Express 2003, 11, 2589–2596.
[11]
Zhang, Y.; Tian, X.; Xue, L.; Zhang, Q.; Yang, L.; Zhu, B. Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure. IEEE Photonics Technol. Lett. 2013, 25, 560–563.
[12]
Yang, R.; Yu, Y.; Xue, Y.; Chen, C.; Wang, C.; Zhu, F.; Zhang, B.; Chen, Q.; Sun, H. A Highly Sensitive Temperature Sensor Based on a Liquid-Sealed S-Tapered Fiber. IEEE Photonics Technol. Lett. 2013, 25, 829–832.
[13]
Han, T.; Liu, Y.; Wang, Z.; Zou, B.; Tai, B.; Liu, B. Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 2010, 35, 2061–2063.
[14]
Qian, W.; Zhao, C.; He, S.; Dong, X.; Zhang, S.; Zhang, Z.; Jin, S.; Guo, J.; Wei, H. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Lett. 2011, 36, 1548–1550.
[15]
Habisreuther, T.; Hailemichael, E.; Ecke, W.; Latka, I.; Schroder, K.; Chojetzki, C.; Schuster, K.; Rothhardt, M.; Willsch, R. ORMOCER coated fiber-optics Bragg grating sensors at cryogenic temperatures. IEEE Sens. J. 2012, 12, 13–16.
[16]
Rajini-Kumar, R.; Suesser, M.; Narayankhedkar, K.; Krieg, G.; Atrey, M. Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature. Cryogenics 2008, 48, 142–147.
[17]
Yu, Y.; Li, X.; Hong, X.; Deng, Y.; Song, K.; Geng, Y.; Wei, H.; Tong, W. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling. Opt. Express 2010, 18, 15383–15388.
[18]
Specification of LMA-8 PCF. Available online: http://nktphotonics.com/files/files/LMA-8–100409.pdf (accessed on 15 August 2012).
[19]
Malitson, I. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965, 55, 1205–1208.
[20]
Samoc, A. Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared. J. Appl. Phys. 2003, 94, 6167–6174.
[21]
Rheims, J.; K?ser, J.; Wriedt, T. Refractive-index measurements in the near-IR using an Abbe refractometer. Meas. Sci. Technol. 1997, 8, 601–605.
[22]
Heller, W. Remarks on refractive index mixture rules. J. Phys. Chem. 1964, 69, 1123–1129.
[23]
Koshiba, M.; Saitoh, K. Structural dependence of effective area and mode field diameter for holey fibers. Opt. Express 2003, 11, 1746–1756.