全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Gait-Based Person Identification Robust to Changes in Appearance

DOI: 10.3390/s130607884

Keywords: gait, person identification, affine moment invariants, local features

Full-Text   Cite this paper   Add to My Lib

Abstract:

The identification of a person from gait images is generally sensitive to appearance changes, such as variations of clothes and belongings. One possibility to deal with this problem is to collect possible subjects’ appearance changes in a database. However, it is almost impossible to predict all appearance changes in advance. In this paper, we propose a novel method, which allows robustly identifying people in spite of changes in appearance, without using a database of predicted appearance changes. In the proposed method, firstly, the human body image is divided into multiple areas, and features for each area are extracted. Next, a matching weight for each area is estimated based on the similarity between the extracted features and those in the database for standard clothes. Finally, the subject is identified by weighted integration of similarities in all areas. Experiments using the gait database CASIA show the best correct classification rate compared with conventional methods experiments.

References

[1]  Bouchrika, I.; Nixon, M. People Detection and Recognition Using Gait for Automated Visual Surveillance. Proceedings of the IEEE International Symposium Imaging for Crime Detection and Prevention, London, UK, June 2006.
[2]  Cunado, D.; Nixon, M.; Carter, J. Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 2003, 90, 1–41.
[3]  Yam, C.; Nixon, M.; Carter, J. Automated person recognition by walking and running via model-based approaches. Pattern Recognit. 2004, 37, 1057–1072.
[4]  Tafazzoli, F.; Safabakhsh, R. Model-based human gait recognition using leg and arm movements. Eng. Appl. Articial Intell. 2010, 23, 1237–1246.
[5]  BenAbdelkader, C.; Cutler, R.; Nanda, H.; Davis, L. EigenGait: Motion-based Recognition of People Using Image Self-similarity. Proceedings of the International Conference Audio- and Video-Based Biometric Person Authentication, Halmstad, Sweden, 6 June 2001.
[6]  Liu, Y.; Collins, R.; Tsin, Y. Gait Sequence Analysis Using Frieze Patterns. Proceedings of the European Conference Computer Vision, Copenhagen, Denmark, 27 May 2002; pp. 657–671.
[7]  Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 316–322.
[8]  Acquah, J.; Nixon, M.; Carter, J. Automatic gait recognition by symmetry analysis. Pattern Recognit. Lett. 2003, 24, 2175–2183.
[9]  Sugiura, K.; Makihara, Y.; Yagi, Y. Gait Identification Based on Multi-view Observations Using Omnidirectional Camera. Proceedings of the Asian Conference on Computer Vision, Tokyo, Japan, 18 November 2007; Volume 1, pp. 452–461.
[10]  Iwashita, Y.; Kurazume, R. Person Identification from Human Walking Sequences Using Affine Moment Invariants. Proceedings of the IEEE International Conference Robotics and Automation, Kobe, Japan, 16 May 2009; pp. 436–441.
[11]  Kobayashi, T.; Otsu, N. Action and Simultaneous Multiple-Person Identification Using Cubic Higher-Order Local Auto-Correlation. Proceedings of the International Conference Pattern Recognition, Cambridge, UK, 23 September 2004; Volume 4, pp. 741–744.
[12]  Sarkar, S.; Phillips, P.; Liu, Z.; Vega, I.; Grother, P.; Bowyer, K. The humanID gait challenge problem: Data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 162–177.
[13]  Katiyar, N.; Pathak, V.; Katiyar, R. Human gait recognition by using motion silhouette contour templates and static silhouette templates. VSRD-TNTJ 2010, I, 207–221.
[14]  Lam, T.; Cheung, K.; Liu, J. Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognit. 2011, 44, 973–987.
[15]  Lin, C.; Wang, K. A Behavior Classification Based on Enhanced Gait Energy Image. Proceedings of the International Conference on Networking and Digital Society (ICNDS)\, Guiyang, China, 30 May 2010; Volume 2, pp. 589–592.
[16]  Chen, C.; Liang, J.; Zhao, H.; Hu, H.; Tian, J. Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognit. Lett. 2009, 30, 977–984.
[17]  Zhang, E.; Ma, H.; Lu, J.; Chen, Y. Gait Recognition Using Dynamic Gait Energy and PCA+LPP Method. Proceedings of the International Conference on Machine Learning and Cybernetics, Hebei, China, 12 July 2009; Volume 1, pp. 50–53.
[18]  Kim, D.; Paik, J. Gait recognition using active shape model and motion prediction. IET Comput. Vision 2010, 4, 25–36.
[19]  Yu, S.; Tan, D.; Huang, K.; Tan, T. Reducing the Effect of Noise on Human Contour in Gait Recognition. Proceedings of the International Conference Advances in Biometrics, Seoul, Korea, 27 August 2007; pp. 338–346.
[20]  Wang, C.; Zhang, J.; Wang, L.; Pu, J.; Yuan, X. Human identification using temporal information preserving gait template. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2164–2176.
[21]  Iwama, H.; Okumura, M.; Makihara, Y.; Yagi, Y. The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1511–1521.
[22]  Iwashita, Y.; Stoica, A.; Kurazume, R. Gait identification using shadow biometrics. Pattern Recognit. Lett. 2012, 33, 2148–2155.
[23]  Hossain, M.D.; Makihara, Y.; Wang, J.; Yagi, Y. Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control. Pattern Recognit. 2010, 43, 2281–2291.
[24]  Li, X.; Wang, D.; Chen, Y. Gait recognition based on partitioned weighting gait energy image. Lecture Notes Comput. Sci. 2013, 7751, 98–106.
[25]  Bashir, K.; Xiang, T.; Gong, S. Gait recognition without subject cooperation. Pattern Recognit. Lett. 2010, 31, 2052–2060.
[26]  Zhang, E.; Zhao, Y.; Xiong, W. Active energy image plus 2DLPP for gait recognition. Signal Process. 2010, 90, 2295–2302.
[27]  Lee, S.; Liu, Y.; Collins, R. Shape variation-based frieze pattern for robust gait recognition. Comput. Vision Pattern Recognit. 2007, 1, 1–8.
[28]  Iwashita, Y.; Uchino, K.; Kurazume, R. Person identification robust to changes in appearance (in Japanese). IEICE Tech. Rep. 2011, 110, 259–263.
[29]  Milovanovic, M.; Minovic, M.; Starcevic, D. New gait recognition method using Kinect stick figure and CBIR. Telecommun. Forum (TELFOR) 2012, 1, 1323–1326.
[30]  Preis, J.; Kessel, M.; Werner, M.; Linnhoff-Popien, C. Gait Recognition with Kinect. Proceedings of the 1st International Workshop on Kinect in Pervasive Computing, Newcastle, UK, 18 June 2012.
[31]  Munsell, B.; Temlyakov, A.; Qu, C.; Wang, S. Person Identification Using Full-body Motion and Anthropometric Biometrics from Kinect Videos. Proceedings of the ECCV 2012 ARTEMIS Workshop, Firenze, Italy, 7 October 2012.
[32]  Flusser, J.; Suk, T.; Zitova, B. Moments and Moment Invariants in Pattern Recognition; Wiley & Sons Ltd.: West Sussex, UK, 2009.
[33]  CASIA Gait Database. Available online: http://www.sinobiometrics.com (accessed on 17 June 2013).
[34]  Iwashita, Y.; Baba, R.; Ogawara, K.; Kurazume, R. Person Identification from Spatio-temporal 3D Gait. Proceedings of the International Conference on Emerging Security Technologies, Canterbury, UK, September 2010; pp. 30–35.
[35]  Iwashita, Y.; Baba, R.; Ogawara, K.; Kurazume, R. Method for Gait-based Biometric Identification Robust to Changes in Observation Angle. Proceedings of the International Conference Image and Vision Computing New Zealand, Oakland, New Zealand, 29 November 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133