全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Combination of RGB and Multispectral Imagery for Discrimination of Cabernet Sauvignon Grapevine Elements

DOI: 10.3390/s130607838

Keywords: multispectral imagery, precision viticulture, Cabernet Sauvignon, optical filters, image processing, classification, K-means

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes a sequential masking algorithm based on the K-means method that combines RGB and multispectral imagery for discrimination of Cabernet Sauvignon grapevine elements in unstructured natural environments, without placing any screen behind the canopy and without any previous preparation of the vineyard. In this way, image pixels are classified into five clusters corresponding to leaves, stems, branches, fruit and background. A custom-made sensory rig that integrates a CCD camera and a servo-controlled filter wheel has been specially designed and manufactured for the acquisition of images during the experimental stage. The proposed algorithm is extremely simple, efficient, and provides a satisfactory rate of classification success. All these features turn out the proposed algorithm into an appropriate candidate to be employed in numerous tasks of the precision viticulture, such as yield estimation, water and nutrients needs estimation, spraying and harvesting.

References

[1]  Arnó, J.; Martínez-Casasnovas, J.A.; Ribes-Dasi, M.; Rosell, J.R. Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res. 2009, 7, 779–790.
[2]  Sudduth, K.A. Engineering Technologies for Precision Farming. Proceedings of International Seminar on Agricultural Mechanization Technology for Precision Farming, Suwon, Korea, 27 May 1999.
[3]  Blackmore, B.S. Developing the Principles of Precision Farming. Proceedings of the International Conference on Agropoles and Agro-Industrial Technological Parks (Agrotech 99), Barretos, Brazil, 15–19 November 1999.
[4]  Proffitt, T.; Pearse, B. Adding value to the wine business precisely: Using precision viticulture technology in Margaret River. Aust. N. Z. Grapegrow. Winemak. 2004, 492, 40–44.
[5]  Dey, D.; Mummert, L. Classification of Plant Structures from Uncalibrated Image Sequences. Proceedings of IEEE Workshop on Applications of Computer Vision (WACV), Breckenridge, CO, USA, 9–11 January 2012; pp. 329–336.
[6]  Fairlie, K.; Whitty, M.; Leach, M.; Norzahari, F.; White, A.; Cossell, S.; Guivant, J.; Katupitiya, J. Spatially Smart Wine—Testing Geospatial Technologies for Sustainable Wine Production. Coordinates 2011, VII, 14–16.
[7]  Monta, M.; Kondo, N.; Shibano, Y. Agricultural Robot in Grape Production System. Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; pp. 2504–2509.
[8]  Ogawa, Y.; Kondo, N.; Monta, M.; Shibusawa, S. Spraying Robot for Grape Production. In Field and Service Robotics; Yuta, S., Asama, H., Prassler, E., Tsubouchi, T., Thrun, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 24, pp. 539–548.
[9]  Braun, T.; Koch, H.; Strub, O.; Zolynski, G.; Berns, K. Improving Pesticide Spray Application in Vineyards by Automated Analysis of the Foliage Distribution Pattern in the Leaf Wall. Proceedings of the 1st Commercial Vehicle Technology Symposium, Kaiserlauten, Germany, 16–18 March 2010.
[10]  Schultz, H.R.; Pieri, P.; Poni, S.; Lebon, E. The Eco-Physiology of Grapevine Canopy Systems— Learning from Models. Proceedings of Recent Advances in Grapevine Canopy Management— An International Symposium, Davis, CA, USA, 16 July 2009.
[11]  Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211.
[12]  Chamelat, R.; Rosso, E.; Choksuriwong, A.; Rosenberger, C.; Laurent, H.; Bro, P. Grape Detection by Image Processing. Proceedings of IEEE 32nd Annual Conference on Industrial Electronics (IECON 2006), Paris, France, 6–10 November 2006; pp. 3697–3702.
[13]  Berestein, R.; Ben, S.O.; Shapiro, A.; Edan, Y. Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell. Serv. Robot. 2010, 3, 233–243.
[14]  Nuske, S.; Achar, S.; Bates, T.; Narasimhan, S.; Singh, S. Yield Estimation in Vineyards by Visual Grape Detection. Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,, San Francisco, CA, USA, 25–30 September 2011; pp. 2352–2358.
[15]  Reis, M.J.C.S.; Morais, R.; Peres, E.; Pereira, C.; Contente, O.; Soares, S.; Valente, A.; Baptista, J.; Ferreira, P.J.S.G.; Bulas, C.J. Automatic detection of bunches of grapes in natural environment from color images. J. Appl. Log. 2012, 10, 285–290.
[16]  Igawa, H.; Tanaka, T.; Kaneko, S.; Tada, T.; Suzuki, S.; Ohmura, I. Base Position Detection of Grapes Stem Considering Its Displacement for Weeding Robot in Vineyards. Proceedings of 38th Annual Conference on IEEE Industrial Electronic Society, Montreal, QC, Canada, 25–28 October 2012; pp. 2567–2572.
[17]  Diago, M.-P.; Correa, C.; Millán, B.; Barreiro, P.; Valero, C.; Tardaguila, J. Grapevine yield and leaf area estimation using supervised classification methodology on rgb images taken under field conditions. Sensors 2012, 12, 16988–17006.
[18]  Van Henten, E.J.; Hemming, J.; van Tuijl, B.A.J.; Kornet, J.G.; Meuleman, J.; Bontsema, J.; van Os, E.A. An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robot. 2002, 13, 241–258.
[19]  Bulanon, D.M.; Burks, T.F.; Alchanatis, V. A multispectral imaging analysis for enhancing citrus fruit detection. Environ. Control Biol. 2010, 48, 81–91.
[20]  Bac, C.W.; Hemming, J.; van Henten, E.J. Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Computers and Electronics in Agriculture, 2013, 96, pp. 148–162. Available online: http://dx.doi.org/10.1016/j.compag.2013.05.004 (accessed on 4 May 2013).
[21]  Wyszecki, G.; Stiles, W.S. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. ed.; Wiley-Interscience: New York, NY, USA, 1982.
[22]  Giorgianni, E.J.; Madden, T.E. Digital Color Management; Addison-Wesley: Reading, MA, USA, 1997.
[23]  Hunt, R.W.G. Measuring Colour, 3rd ed. ed.; Fountain Press: Tolworth, UK, 1998.
[24]  Fairchild, M.D.; Rosen, M.R.; Johnson, G.M. Spectral and Metameric Color Imaging. Available online: http://www.cis.rit.edu/mcsl/research/reports.php (accessed on 19 February 2013).
[25]  Novati, G.; Pellegri, P.; Schettini, R. An affordable multispectral imaging system for the digital museum. Int. J. Digit. Libr. 2005, 5, 167–178.
[26]  Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. Int. J. Remote Sens. 1998, 19, 657–675.
[27]  Lamb, D.; Hall, A.; Louis, J. Airborne remote sensing of vines for canopy variability and productivity. Aust. N. Z. Grapegrow. Winemak. 2001, 449a, 89–92.
[28]  Rodríguez-Pérez, J.R.; Ria?o, D.; Carlisle, E.; Ustin, S.; Smart, D.R. Evauation of hyperspectral reflectance indexes to detect grapevine water status in vineyards. Am. J. Enol. Vitic. 2007, 58, 302–317.
[29]  Thenkabail, P.S.; Smith, R.B.; de Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182.
[30]  Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical remote sensing applications in viticulture—A review. Aust. J. Grape Wine Res. 2002, 8, 36–47.
[31]  Kotsiantis, S.B. Supervised machine learning: A review of classification techniques. Informatica 2007, 31, 249–268.
[32]  Yan, Y.; Shen, Y.; Li, S. Unsupervised Color-Texture Image Segmentation Based on a New Clustering Method. Proceedings of International Conference in New Trends in Information and Service Science (NISS 2009), Beijing, China, 30 June–2 July 2009; pp. 784–787.
[33]  Bagirov, A.; Rubinov, A.; Soukhoroukova, N.; Yearwood, J. Unsupervised and supervised data classification via nonsmooth and global optimization. Top Springer-Verl. 2003, 11, 1–75.
[34]  Langer, H.; Falsaperla, S.; Masotti, M.; Campanini, R.; Spampinato, S.; Messina, A. Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor at Etna, Italy. Geophys. J. Int. 2009, 178, 1132–1144.
[35]  Buluswar, S.D.; Draper, B.A. Color machine vision for autonomous vehicles. Int. J. Eng. Appl. Artif. Intell. 1998, 11, 245–256.
[36]  Jain, A.; Dubes, R. Algorithms for Clustering Data; Prentice Hall: New Jersey, NJ, USA, 1988.
[37]  Wallace, R. Finding Natural Clusters through Entropy Minimization. Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, USA,, 1989.
[38]  Mucherino, A.; Papajorgji, P.J.; Pardalos, P.M. Data Mining in Agriculture; Springer: New York, NY, USA, 2009.
[39]  Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2005.
[40]  Han, J.; Kamber, M. Data Mining: Concepts and Techniques; Morgan Kaufmann: San Francisco, CA, USA, 2000.
[41]  Alsabti, K.; Ranka, S.; Singh, V. An Efficient K-Means Clustering Algorithm. Proceedings of the First Workshop on High-Performance Data Mining, Orlando, FL, USA, 30 March–3 April 1998.
[42]  Ford, A.; Roberts, A. Colour Space Conversions; Westminster University: London, UK, 1998.
[43]  Poynton, C. A Guided Tour of Colour Space, New Foundations for Video Technology. Proceedings of the SMTPE Advanced Television and Electronic Imaging Conference, San Francisco, CA, USA, 10–11 February 1995; pp. 167–180.
[44]  Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133