全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

DOI: 10.3390/s130607827

Keywords: test platform, signal amplification and processing circuits, nanostructure sensors, carbon nanotube, remote monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate.

References

[1]  Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.
[2]  Sinha, N.; Ma, J.; Yeow, J.T.W. Carbon nanotube-based sensors. J. Nanosci. Nanotechnol. 2006, 6, 573–590.
[3]  Zhang, T.; Mubeen, S.; Myung, N.V.; Deshusses, M.A. Recent progress in carbon nanotube-based gas sensors. In Nanotechnology; 2008; Volume 19, doi:10.1088/0957-4484/19/33/332001.
[4]  Bondavalli, P.; Legagneux, P.; Pribat, D. Carbon nanotubes based transistors as gas sensors: State of the art and critical review. Sens. Actuators B 2009, 140, 304–318.
[5]  Jang, C.W.; Byun, Y.T.; Jhon, Y.M. Detection of 10 nM ammonium ions in 35‰ NaCl solution by carbon nanotube based sensors. J. Nanosci. Nanotechnol. 2012, 12, 1765–1769.
[6]  Kim, T.H.; Lee, J.; Hong, S. Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J. Phys. Chem. C 2009, 113, 19393–19396.
[7]  Jacobs, C.B.; Peairs, M.J.N.; Venton, B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127.
[8]  Allen, B.L.; Kichambare, P.D.; Star, A. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 2007, 19, 1439–1451.
[9]  Jeykumari, D.R.; Kalaivani, R.; Sriman Narayanan, S. Nanobiocomposite electrochemical biosensor utilizing synergic action of neutral red functionalized carbon nanotubes. Nano-Micro Lett. 2012, 4, 220–227.
[10]  Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036.
[11]  Liu, Y.; Dong, X.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.
[12]  Huang, X.J.; Choi, Y.K. Chemical sensors based on nanostructured materials. Sens. Actuators B 2007, 122, 659–671.
[13]  Liu, H.; Kameoka, J.; Czaplewski, D.A.; Craighead, H.G. Polymeric nanowire chemical sensor. Nano Lett. 2004, 4, 671–675.
[14]  Abraham, J.K.; Philip, B.; Witchurch, A.; Varadan, V.K.; Reddy, C.C. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater. Struct. 2004, 13, 1045–1049.
[15]  Chavali, M.; Lin, T.H.; Wu, R.J.; Luk, H.N.; Hung, S.L. Active 433 MHz-W UHF RF-powered chip integrated with a nanocomposite m-MWCNT/polypyrrole sensor for wireless monitoring of volatile anesthetic agent sevoflurane. Sens. Actuators A 2008, 141, 109–119.
[16]  Lee, D.S.; Lee, D.D.; Ban, S.W.; Lee, M.; Kim, Y.T. Sno2 gas sensing array for combustible and explosive gas leakage recognition. IEEE Sens. J. 2002, 2, 140–149.
[17]  Shin, Y.S.; Lee, S.; Wee, J.K.; Song, I. A small-area low-power current readout circuit using two-stage conversion method for 64-channel cnt sensor arrays. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 276–284.
[18]  Cho, T.S.; Lee, K.J.; Kong, J.; Chandrakasan, A.P. A 32-μW 1.83-kS/s carbon nanotube chemical sensor system. IEEE J. Solid-State Circuits 2009, 44, 659–669.
[19]  Chow, C.T.; Sin, M.L.Y.; Leong, P.H.W.; Li, W.J.; Pun, K.P. Design and Modeling of a CNT-CMOS Low-Power Sensor Chip. Proceedings of the 2nd IEEE International Conference Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 January 2007.
[20]  Lee, BY.; Seo, S.M.; Lee, D.J.; Lee, M.; Lee, J.; Cheon, J.; Cho, E.; Lee, H.; Chung, I.; Park, Y.J.; et al. Biosensor system-on-a-chip including CMOS-based signal processing circuits and 64 carbon nanotube-based sensors for the detection of a neurotransmitter. Lab Chip 2010, 10, 894–898.
[21]  Jang, C.W.; Byun, Y.T.; Woo, D.H.; Lee, S.; Jhon, Y.M. Oxygen plasma post process to obtain consistent conductance of carbon nanotubes in carbon nanotube field-effect transistors. Appl. Phys. Lett. 2012, doi:10.1063/1.4762829.
[22]  Kim, K.H.; Kim, T.G.; Lee, S.; Jhon, Y.M.; Kim, S.H.; Byun, Y.T. Simple assembling technique of single-walled carbon nanotubes using only photolithography. J. Korean Phys. Soc. 2011, 58, 1380–1383.
[23]  Kim, K.H.; Jang, C.W.; Kim, T.G.; Lee, S.; Kim, S.H.; Byun, Y.T. Processing technique for single-walled carbon nanotube-based sensor arrays. J. Nanosci. Nanotechnol. 2012, 12, 1251–1255.
[24]  Jang, C.W.; Byun, Y.T.; Woo, D.H.; Lee, S.; Jhon, Y.M. Enhanced adhesion between carbon nanotubes and substrate surfaces by low-temperature annealing. J. Korean Phys. Soc. 2012, 61, 2096–2099.
[25]  Kumar, M.K.; Ramaprabhu, S. Nanostructured pt functionlized multiwalled carbon nanotube based hydrogen sensor. J. Phys. Chem. B 2006, 110, 11291–11298.
[26]  Patel, N.G.; Patel, P.D.; Vaishnav, V.S. Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens. Actuators B 2003, 96, 180–189.
[27]  Adamson, K.A.; Pearson, P. Hydrogen and methanol: A comparison of safety, economics, efficiencies and emissions. J. Power Sources 2000, 86, 548–555.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133