全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

In-Plane Resonant Nano-Electro-Mechanical Sensors: A Comprehensive Study on Design, Fabrication and Characterization Challenges

DOI: 10.3390/s130709364

Keywords: nano-electro-mechanical sensors, resonance detection, total quality factor, junction-less field-effect-transistor, metal-oxide-semiconductor field-effect-transistor

Full-Text   Cite this paper   Add to My Lib

Abstract:

The newly proposed in-plane resonant nano-electro-mechanical (IP R-NEM) sensor, that includes a doubly clamped suspended beam and two side electrodes, achieved a mass sensitivity of less than zepto g/Hz based on analytical and numerical analyses. The high frequency characterization and numerical/analytical studies of the fabricated sensor show that the high vacuum measurement environment will ease the resonance detection using the capacitance detection technique if only the thermoelsatic damping plays a dominant role for the total quality factor of the sensor. The usage of the intrinsic junction-less field-effect-transistor (JL FET) for the resonance detection of the sensor provides a more practical detection method for this sensor. As the second proposed sensor, the introduction of the monolithically integrated in-plane MOSFET with the suspended beam provides another solution for the ease of resonance frequency detection with similar operation to the junction-less transistor in the IP R-NEM sensor. The challenging fabrication technology for the in-plane resonant suspended gate field-effect-transistor (IP RSG-FET) sensor results in some post processing and simulation steps to fully explore and improve the direct current (DC) characteristics of the sensor for the consequent high frequency measurement. The results of modeling and characterization in this research provide a realistic guideline for these potential ultra-sensitive NEM sensors.

References

[1]  Brand, O. Fabrication Technology. In Advanced Micro and Nanosystems; Brand, O., Fedder, G.K., Eds.; 2005; Volume 2, pp. 1–67.
[2]  Ollier, E.; Duraffourg, L.; Delaye, M.T.; Grange, H.; Deneuville, S.; Bernos, J.; Dianoux, R.; Marchi, F.; Renaud, D.; Baron, T.; et al. NEMS Devices for Accelerometers Compatible with Thin SOI Technology. Proceedings of 2nd IEEE International Conference of Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 January 2007; pp. 180–185.
[3]  Ollier, E.; Duraffourg, L.; Colinet, E.; Durand, C.; Renaud, D.; Royet, A.S.; Renaux, P.; Casset, F.; Robert, P. Lateral MOSFET Transistor with Movable Gate for NEMS Devices Compatible with In-IC Integration. Proceedings of 3rd IEEE International Conference of Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 January 2008; pp. 764–769.
[4]  Yang, Y.T.; Callegari, C.; Feng, X.L.; Ekinci, K.L.; Roukes, M.L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 2006, 6, 583–586, doi:10.1021/nl052134m. 16608248
[5]  Hassani, F.A.; Cobianu, C.; Armini, S.; Petrescu, V.; Merken, P.; Tsamados, D.; Ionescu, A.M.; Tsuchiya, Y.; Mizuta, H. Design and Analysis of an In-Plane Resonant Nano-Electro-Mechanical Sensor for Sub-Attogram-Level Molecular Mass-Detection. Proceedings of International Conference of Solid State Devices and Materials, Sendai, Japan, 7–9 October 2009.
[6]  Koumela, A.; Mercier, D.; Marcoux, C.; Purcell, S.T. Performances of Suspended Silicon Nanowire Resonators for Time Reference Applications. Proceedings of IEEE International Frequency Control Symposium, Baltimore, MD, USA, 21–24 May 2012; pp. 1–4.
[7]  Hassani, F.A.; Cobianu, C.; Armini, S.; Petrescu, V.; Merken, P.; Tsamados, D.; Ionescu, A.M.; Tsuchiya, Y.; Mizuta, H. Numerical analysis of zeptogram/Hz-level mass responsivity for in-plane resonant nano-electro-mechanical sensors. Microelectron. Eng. 2011, 88, 2879–2884, doi:10.1016/j.mee.2011.03.005.
[8]  Colinet, E.; Durand, C.; Duraffourg, L.; Audebert, P.; Dumas, G.; Casset, F.; Ollier, E.; Ancey, P.; Carpentier, J.-F.; Buchaillot, L.; Ionescu, A.M. Ultra-sensitive capacitive detection based on SGMOSFET compatible with front-end CMOS process. IEEE J. Solid-State Circuits 2009, 44, 247–257, doi:10.1109/JSSC.2008.2007448.
[9]  Clenland, A.N.; Roukes, M.L. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 1996, 69, 2653–2655, doi:10.1063/1.117548.
[10]  Al_Khusheiny, M.; Majlis, B. Aluminum Based Two-Port-Clamped-Clamped Resonators. Proceedings of IEEE International Conference of Semiconductor Electronics, Kuala Lumpur, Malaysia, 29 October–1 December 2006; pp. 188–192.
[11]  Rao, S.S. Mechanical Vibrations; Pearson Prentice Hall-Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2004; pp. 611–613.
[12]  Ekinci, K.L.; Huang, X.M.; Roukes, M.L. Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 2004, 84, 4469–4471, doi:10.1063/1.1755417.
[13]  Nathanson, H.C.; Newell, W.E.; Wickstrom, R.A.; Davis, J.R.J. The resonant gate transistor. IEEE Trans. Electron. Dev. 1967, 14, 117–133, doi:10.1109/T-ED.1967.15912.
[14]  Pacheco, S.; Zurcher, P.; Young, S.; Weston, D.; Dauksher, W. RF MEMS Resonator for CMOS Back-End-of-Line Integration. Proceedings of Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems, 8–10 September 2004; pp. 203–206.
[15]  Bannon, F.D.; Clark, J.R.; Nguyen, C.T.-C. High-Q HF microelectromechanical filters. IEEE J. Solid-State Circuits 2000, 35, 512–526, doi:10.1109/4.839911.
[16]  Chouvion, B. Vibration Transmission and Support Loss in MEMS Sensors. Ph.D. Thesis, University of Nottingham, Nottingham, UK, January 2010.
[17]  Beeby, S.; Ensell, G.; Kraft, M.; White, N. Inertial Sensors. In MEMS Mechanical Sensors; Artech House Inc.: Norwood, WV, USA, 2004; pp. 173–211.
[18]  Berny, A. Substrate Effects in Squeeze Film Damping of Lateral Parallel-Plate Sensing MEMS Structures. Available online: http://www-bsac.eecs.berkeley.edu/~pister/245/project/Berny.pdf (accessed on 19 July 2013).
[19]  Brotz, J. Damping in CMOS-MEMS Resonators.. Master's Project Report; Carnegie Mellon University: Pittsburgh, PA, USA, 2004.
[20]  Ekinci, K.L.; Roukes, M.L. Nanoelectromechanical systems. Rev. Sci. Instr. 2005, 76, 061101:1–061101:12.
[21]  Karabacak, D.M.; Yakhot, V.; Ekinci, K.L. High-Frequency nanofluidics: An experimental study using nanomechanical resonators. Phys. Rev. Lett. 2007, 98, 254505:1–254505:4.
[22]  Veijola, T.; Kuisma, H.; Lahdenpera, J.; Ryhanen, T. Equivalent-circuit model of the squeezed gas film in a silicon accelerometer. Sens. Actuators A-Phys. 1995, 48, 239–248, doi:10.1016/0924-4247(95)00995-7.
[23]  Lifshitz, R.; Roukes, M.L. Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 2000, 61, 5600–5609.
[24]  Wilson-Rae, I. Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys. Rev. B 2008, 77, 245418:1–245418:32.
[25]  Haoa, Z.; Erbil, A.; Ayazi, F. An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sens. Actuators A 2003, 109, 156–164, doi:10.1016/j.sna.2003.09.037.
[26]  Abelé, N. Design and Fabrication of Suspended-Gate MOSFETs for MEMS Resonator, Switch and Memory Applications. Ph.D. Thesis, Institute of Microelectronics and Microsys-tems (IMM) Electronics Laboratories (LEG) and Center of MicroNano Technology (CMI), Lausanne, Switzerland, June 2007.
[27]  CoventorWare. Available online: http://www.coventor.com/products/coventorware/ (accessed on 19 July 2013).
[28]  Courcimault, C.G.; Allen, M.G. High-Q Mechanical Tuning of MEMS Resonators Using a Metal Deposition-Annealing Technique. Proceedings of 13th International Conference of Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, 5–9 June 2005; pp. 875–878.
[29]  Crego-Calama, M.; Brongersma, S.; Karabacak, D. A low-power integrated electronic nose system. Sens. Rev. 2012, 32, 72–76, doi:10.1108/02602281211198485.
[30]  Feng, X.L.; White, C.J.; Hajimiri, A.; Roukes, M.L. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nature Nanotech. 2008, 3, 342–346, doi:10.1038/nnano.2008.125.
[31]  Ekinci, K.L.; Yang, Y.T.; Roukes, M.L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 2004, 95, 2682–2689, doi:10.1063/1.1642738.
[32]  Peng, H.B.; Chang, C.W.; Aloni, S.; Yuzvinsky, T.D.; Zettl, A. Ultrahigh frequency nano-tube resonators. Phys. Rev. Lett. 2006, 97, 087203:1–087203:4.
[33]  Feng, X.L.; He, R.; Yang, P.; Roukes, M.L. Very high frequency silicon nanowire elec-tromechanical resonators. Nano Lett. 2007, 7, 1953–1959, doi:10.1021/nl0706695.
[34]  Black, D.J.; Mattzela, J.; Ho, T.; Wang, Y.; Lew, K.-K.; Redwing, J.; Mayer, T.S. Plasma-assisted oxidation for surface passivation of silicon nanowires. NSF EE REU PENN STATE Ann. Res. J. 2004, 2, 121–128.
[35]  Ollier, E.; Dupré, C.; Arndt, G.; Arcamone, J.; Vizioz, C.; Duraffourg, L.; Sage, E.; Koumela, A.; Hentz, S.; Cibrario, G.; et al. Ultra-Scaled High-Frequency Single-Crystal Si NEMS Resonators and Their Front-End Co-Integration with CMOS for High Sensitivity Applications. Proceedings of 25th IEEE International Conference of Micro Electro Mechanical Systems, Paris, France, 29 January–2 February 2012; pp. 1368–1371.
[36]  Durand, C.; Casset, F.; Renaux, P.; Abelé, N.; Legrand, B.; Renaud, D.; Ollier, E.; Ancey, P.; Ionescu, A.M.; Buchaillot, L. In-plane silicon-on-nothing nanometer-scale resonant suspended gate MOSFET for in-IC integration perspectives. IEEE Electron Dev. Lett. 2008, 29, 494–496, doi:10.1109/LED.2008.919781.
[37]  Bartsch, S.T.; Grogg, D.; Lovera, A.; Tsamados, D.; Ayoz, S.; Ionescu, A.M. Resonant-Body Fin-FETs with Sub-nW Power Consumption. Proceedings of IEEE International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 761–764.
[38]  Arun, A.; Campidelli, S.; Filoramo, A.; Derycke, V.; Salet, P.; Ionescu, A.M.; Goffman, M.F. SWNT array resonant gate MOS transistor. Nanotechnology 2011, doi:10.1088/0957-4484/22/5/055204.
[39]  Zhu, R.; Wang, D.; Xiang, S.; Zhou, Z.; Ye, X. Piezoelectric characterization of a single zinc oxide nanowire using a nanoelectromechanical oscillator. Nanotechnology 2008, doi:10.1088/0957-4484/19/28/285712.
[40]  Bartsch, S.T.; Rusu, A.; Ionescu, A.M. A single active nanoelectromechanical tuning fork front-end radio-frequency receiver. Nanotechnology 2012, 23, 225501–225507, doi:10.1088/0957-4484/23/22/225501. 22572200
[41]  Gouttenoire, V.; Barois, T.; Perisanu, S.; Leclercq, J.L.; Purcell, S.T.; Vincent, P.; Ayari, A. Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone. Small 2010, 6, 1060–1065, doi:10.1002/smll.200901984. 20394067
[42]  Tsividis, Y. Operation and Modeling of the MOS Transistor; McGraw-Hill Inc.: New York, NY, USA, 1987.
[43]  Bartsch, S.T.; Dupré, C.; Ollier, E.; Ionescu, A.M. Resonant-Body Silicon Nanowire Field Effect Transistor without Junctions. Proceedings of IEEE International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 1521–1524.
[44]  Silvaco. Available online: http://www.silvaco.com/content/kbase/atlas_detailed_overview.pdf (accessed on 19 July 2013).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133