Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.
References
[1]
Frey, J.; Lennvall, T. Wireless Sensor Networks for Automation. In Embedded Systems Handbook; CRC PressI Llc, Taylor & Francis Group: London, UK, 2009; Volume 6, pp. 1–43.
[2]
Pister, K.; Thubert, P.; Dwars, S.; Phinney, T. Industrial Routing Requirements in Low-Power and Lossy Networks; ROLL RFC 5673. 2009. Available online: http://www.ietf.org/rfc/rfc5673.txt (on accessed 24 June 2013).
[3]
ISA-100.11a-2011 Wireless systems for Industrial Automation: Process Control and Related Applications. Available online: http://www.isa.org/Template.cfm?Section=Standards8&template=/Ecommerce/ProductDisplay.cfm&ProductID=11931 (on accessed 24 June 2013).
[4]
IEC 62591: Industrial Communication Networks - Wireless Communication Network and Communication Profiles - WirelessHART. Available online: http://webstore.iec.ch/webstore/webstore.nsf/Artnum_PK/43964 (on accessed 24 June 2013).
[5]
ZigBee Specification. Available online: http://www.zigbee.org/Specifications.aspx (on accessed 24 June 2013).
[6]
Christin, D.; Mogre, P.S.; Hollick, M. Survey on wireless sensor network technologies for industrial automation: The security and quality of service perspectives. Future Internet 2010, 2, 96–125.
[7]
Zand, P.; Chatterjea, S.; Das, K.; Havinga, P. Wireless industrial monitoring and control networks: The journey so far and the road ahead. J. Sens. Actuat. Netw. 2012, 1, 123–152.
[8]
Watteyne, T.; Lanzisera, S.; Mehta, A.; Pister, K.S.J. Mitigating Multipath Fading through Channel Hopping in Wireless Sensor Networks. Proceedings of the 2010 IEEE International Conference on Communications (ICC), Cape Town, South Africa, 23–27 May 2010; pp. 1–5.
[9]
IEEE Standard for Information Technology—Local and metropolitan area networks—Specific requirements– Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs). IEEE Std 802.15.4; IEEE Computer Society: New York, NY, USA, 2006.
[10]
IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4–2011); IEEE Computer Society: New York, NY, USA, 2012.
[11]
Zand, P.; Chatterjea, S.; Ketema, J.; Havinga, P. A Distributed Scheduling Algorithm for Real-Time (D-SAR) Industrial Wireless Sensor and Actuator Networks. Proceedings of the 2012 IEEE17th Conference on Emerging Technologies & Factory Automation (ETFA), Krakow, Poland, 17–21 September 2012; pp. 1–4.
[12]
ATM Forum Technical Committee, ATM user-network interface (UNI) specification version 3.1; Prentice-Hall: Upper Saddle River, NJ, USA, 1995.
[13]
Winter, T.; Thubert, P.; Team, R.A. RPL: IPv6 routing protocol for low power and lossy networks, RFC 6550. IETF ROLL WG Tech. Rep. March 2012. Available online: http://tools.ietf.org/html/rfc6550 (on accessed 24 June 2013).
[14]
Pister, K.; Doherty, L. TSMP: Time synchronized mesh protocol. Proceedings of the 20th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2008), Orlando, FL, USA, 16–18 November 2008; pp. 391–398.
[15]
Song, H.; Xiuming, Z.; Mok, A.K.; Deji, C.; Nixon, M. Reliable and Real-Time Communication in Industrial Wireless Mesh Networks. Proceedings of the 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Chicago, USA, 11–13 April 2011; pp. 3–12.
[16]
Badia, L.; Erta, A.; Lenzini, L.; Zorzi, M. A general interference-aware framework for joint routing and link scheduling in wireless mesh networks. Network IEEE 2008, 22, 32–38.
[17]
Gupta, P.; Kumar, P.R. The capacity of wireless networks. Inf. Theory IEEE Trans. 2000, 46, 388–404.
[18]
Munir, S.; Lin, S.; Hoque, E.; Nirjon, S.M.S.; Stankovic, J.A.; Whitehouse, K. Addressing Burstiness for Reliable Communication and Latency Bound Generation in Wireless Sensor Networks. Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, Stockholm, Sweden, 12–16 April 2010; pp. 303–314.
[19]
Suriyachai, P.; Brown, J.; Roedig, U. Time-Critical Data Delivery in Wireless Sensor Networks. In Distributed Computing in Sensor Systems; Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6131, pp. 216–229.
[20]
Salajegheh, M.; Soroush, H.; Kalis, A. HYMAC: Hybrid TDMA/FDMA Medium Access Control Protocol for Wireless Sensor Networks. Proceedings of the IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2007, Athens, Greece, 3–7 September 2007; pp. 1–5.
[21]
Ergen, S.C.; Varaiya, P. PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks. IEEE Trans. Mobile Comput. 2006, 5, 920–930.
[22]
Van Hoesel, L.F.; Havinga, P. A Lightweight Medium Access Protocol (LMAC) for Wireless Sensor Networks: Reducing Preamble Transmissions and Transceiver State Switches. Proceedings of the 1st International Workshop on Networked Sensing Systems (INSS), Tokyo, Japan, 22–23 June 2004; pp. 205–208.
[23]
Tinka, A.; Watteyne, T.; Pister, K. A Decentralized Scheduling Algorithm for Time Synchronized Channel Hopping Ad Hoc Networks. In Ad Hoc Networks; Zheng, J., Simplot-Ryl, D., Leung, V.C.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 49, pp. 201–216.
[24]
Zand, P.; Chatterjea, S.; Ketema, J.; Havinga, P. D-SAR: A Distributed Scheduling Algorithm for Real-time, Closed-Loop Control in Industrial Wireless Sensor and Actuator NetworksTechnical Report TR-CTIT-11-09. Centre for Telematics and Information Technology University of Twente: Enschede, 2011. Available online: http://eprints.eemcs.utwente.nl/20078 (on accessed 24 June 2013).
[25]
Zand, P.; Dilo, A.; Havinga, P. Implementation of WirelessHART in NS-2 Simulator. Proceedings of the 2012 IEEE 17th Conference on Emerging Technologies & Factory Automation (ETFA), Krakow, Poland, 17–21 September 2012; pp. 1–8.
[26]
Philipp, M.; Martocci, J.; Brandt, A.; Baccelli, E.; Goyal, M. Reactive Discovery of Point-to-Point Routes in Low Power and Lossy Networks. IETF Internet Draft draft-ietf-roll-p2p-rpl-17. Available online: http://tools.ietf.org/html/draft-ietf-roll-p2p-rpl-17 (on accessed 24 June 2013).