全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Improving Driver Alertness through Music Selection Using a Mobile EEG to Detect Brainwaves

DOI: 10.3390/s130708199

Keywords: classifier, drowsy detection, EEG sensor, electroencephalogram, refreshing music

Full-Text   Cite this paper   Add to My Lib

Abstract:

Driving safety has become a global topic of discussion with the recent development of the Smart Car concept. Many of the current car safety monitoring systems are based on image discrimination techniques, such as sensing the vehicle drifting from the main road, or changes in the driver’s facial expressions. However, these techniques are either too simplistic or have a low success rate as image processing is easily affected by external factors, such as weather and illumination. We developed a drowsiness detection mechanism based on an electroencephalogram (EEG) reading collected from the driver with an off-the-shelf mobile sensor. This sensor employs wireless transmission technology and is suitable for wear by the driver of a vehicle. The following classification techniques were incorporated: Artificial Neural Networks, Support Vector Machine, and k Nearest Neighbor. These classifiers were integrated with integration functions after a genetic algorithm was first used to adjust the weighting for each classifier in the integration function. In addition, since past studies have shown effects of music on a person’s state-of-mind, we propose a personalized music recommendation mechanism as a part of our system. Through the in-car stereo system, this music recommendation mechanism can help prevent a driver from becoming drowsy due to monotonous road conditions. Experimental results demonstrate the effectiveness of our proposed drowsiness detection method to determine a driver’s state of mind, and the music recommendation system is therefore able to reduce drowsiness.

References

[1]  Noachtar, S.; Binnie, C.; Ebersole, J.; Mauguiere, F.; Sakamoto, A.; Westmoreland, B. A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the eeg findings. The international federation of clinical neurophysiology. Electroencephal. Clin. Neurophysiol. Supple. 1999, 52, 21.
[2]  Yokoyama, M.; Oguri, K.; Miyaji, M. Effect of Sound Pressure Levels of Music on Driver's Drowsiness. Proceedings of the 15th World Congress on Intelligent Transport Systems and ITS America's 2008 Annual Meeting, New York, NY, USA, 16–20 November 2008.
[3]  Xia, Q.; Song, Y.-W.; Zhu, X.-F. The research development on driving fatigue based on perclos. Tech. Autom. Appl. 2008, 6, 13.
[4]  Wang, L.; Wu, X.-J.; Ba, B.-D.; Dong, W.-H. A vision-based method to detect perclos features. Comput. Eng. Sci. 2006, 6, 17.
[5]  Yang, B.; Huang, Y.-Z. A study on drowsy driver monitor system using perclos. Contr. Autom. 2005, 21, 119–121.
[6]  Zhang, L.-Y.; Zheng, C.-X.; Li, X.-P.; Shen, K.-Q. Measuring kolmogorov entropy of eeg for studying the state of mental fatigue. J. Chin. J. Biomed. Eng. 2007, 26, 170–176.
[7]  Wang, L.; Yu, T.; Wen, B.-C. Assessment based on nonlinear parameters of eeg α waves for human-body fatigues. J. Northeast. Univ. 2005, 26, 1174–1177.
[8]  Yan, S.; Wei, J.-Q.; Wu, Y.-H. Study of eeg features extraction for doze car driver. Chin. J. Biomed. Eng. 2005, 24, 110–113.
[9]  Murata, A.; Uetake, A.; Takasawa, Y. Evaluation of mental fatigue using feature parameter extracted from event-related potential. Int. J. Ind. Ergonom. 2005, 35, 761–770, doi:10.1016/j.ergon.2004.12.003.
[10]  Jung, T.-P.; Makeig, S.; Stensmo, M.; Sejnowski, T.J. Estimating alertness from the eeg power spectrum. IEEE Trans. Biomed. Eng. 1997, 44, 60–69, doi:10.1109/10.553713. 9214784
[11]  Li, M.-A.; Zhang, C.; Yang, J.-F. An Eeg-Based Method for Detecting Drowsy Driving State. Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Yantai, China, 10–12 August 2010; pp. 2164–2167.
[12]  Lin, C.-T.; Wu, R.-C.; Liang, S.-F.; Chao, W.-H.; Chen, Y.-J.; Jung, T.-P. Eeg-based drowsiness estimation for safety driving using independent component analysis. IEEE Trans. Circu. Syst. I Regul. Pap. 2005, 52, 2726–2738, doi:10.1109/TCSI.2005.857555.
[13]  Huang, R.-S.; Jung, T.-P.; Makeig, S. Tonic changes in eeg power spectra during simulated driving. Found. Augment. Cognit. Neuroerg. Operat. Neurosci. 2009, 5638, 394–403.
[14]  Srinivasan, V.; Eswaran, C.; Sriraam, N. Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 2005, 29, 647–660, doi:10.1007/s10916-005-6133-1. 16235818
[15]  Rivero, D.; Dorado, J.; Rabu?al, J.; Pazos, A. Evolving Simple Feed-Forward and Recurrent Anns for Signal Classification: A Comparison. Proceedings of the International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 2685–2692.
[16]  Subasi, A. Epileptic seizure detection using dynamic wavelet network. Exp. Syst. Appl. 2005, 29, 343–355, doi:10.1016/j.eswa.2005.04.007.
[17]  Subasi, A. Eeg signal classification using wavelet feature extraction and a mixture of expert model. Exp. Syst. Appl. 2007, 32, 1084–1093, doi:10.1016/j.eswa.2006.02.005.
[18]  Guo, L.; Rivero, D.; Seoane, J.A.; Pazos, A. Classification of Eeg Signals Using Relative Wavelet Energy and Artificial Neural Networks. Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai, China, 12–14 June 2009; pp. 177–184.
[19]  Sivasankari, N.; Thanushkodi, K. Automated epileptic seizure detection in eeg signals using fastica and neural network. Int. J. Adv. Soft Comput. Appl. 2009, 1, 91–104.
[20]  Cuingnet, R.; Chupin, M.; Benali, H.; Colliot, O. Spatial and Anatomical Regularization of Svm for Brain Image Analysis. Proceedings of the Neural Information Processing Systems Conference, Vancouver, BC, Canada, 6–9 December 2010; pp. 460–468.
[21]  Guler, I.; Ubeyli, E.D. Multiclass support vector machines for eeg-signals classification. IEEE Trans. Inform. Technol. Biomed. 2007, 11, 117–126, doi:10.1109/TITB.2006.879600.
[22]  Costantini, G.; Casali, D.; Todisco, M. An SVM Based Classification Method for EEG Signals. Proceedings of the 14th WSEAS International Conference on Circuits, Corfu Island, Greece, 22–24 July 2010.
[23]  Jrad, N.; Congedo, M.; Phlypo, R.; Rousseau, S.; Flamary, R.; Yger, F.; Rakotomamonjy, A. Sw-SVM: Sensor weighting support vector machines for EEG-based brain–computer interfaces. J. Neur. Eng. 2011, doi:10.1088/1741-2560/8/5/056004.
[24]  Yazdani, A.; Ebrahimi, T.; Hoffmann, U. Classification of EEG Signals Using Dempster Shafer Theory and a K-Nearest Neighbor Classifier. Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering, Antalya, Turkey, 29 April–2 May 2009; pp. 327–330.
[25]  Sulaiman, N.; Taib, M.N.; Lias, S.; Murat, Z.H.; Aris, S.A.M.; Hamid, N.H.A. EEG-Based Stress Features Using Spectral Centroids Technique and K-Nearest Neighbor Classifier. Proceedings of the 13th International Conference on Computer Modelling and Simulation (UKSim), Cambridge, UK, 30 March–1 April 2011; pp. 69–74.
[26]  Li, X.; Zhao, Q.; Liu, L.; Peng, H.; Qi, Y.; Mao, C.; Fang, Z.; Liu, Q.; Hu, B. Improve affective learning with EEG approach. Comput. Inform. 2012, 29, 557–570.
[27]  Tomioka, R.; Aihara, K.; Müller, K.-R. Logistic regression for single trial EEG classification. Adv. Neur. Inform. Proc. Syst. 2007, 19, 1377–1384.
[28]  Tomioka, R.; Dornhege, G.; Nolte, G.; Aihara, K.; Müller, K.-R. Optimizing spectral filters for single trial eeg classification. Lect. Note. Comput. Sci. 2006, 4174, 414–423.
[29]  Thomas, E.M.; Temko, A.; Lightbody, G.; Marnane, W.P.; Boylan, G.B. A Gaussian Mixture Model Based Statistical Classification System for Neonatal Seizure Detection. Proceedings of IEEE International Workshop on the Machine Learning for Signal Processing, Grenoble, France, 1–4 September 2009; pp. 1–6.
[30]  Wallerius, J.; Trejo, L.J.; Matthews, R.; Rosipal, R.; Caldwell, J.A. Robust Feature Extraction and Classification of Eeg Spectra for Real-Time Classification of Cognitive State. Proceedings of 11th International Conference on Human Computer Interaction, Las Vegas, NV, USA, 22–27 July 2005.
[31]  Chen, H.-C.; Chen, A.L. A music recommendation system based on music and user grouping. J. Intell. Inform. Syst. 2005, 24, 113–132, doi:10.1007/s10844-005-0319-3.
[32]  Chen, H.-C.; Chen, A.L. A Music Recommendation System Based on Music Data Grouping and User Interests. Proceedings of the Tenth International Conference on Information and Knowledge Management, Atlanta, Georgia, 5–10 November 2001; pp. 231–238.
[33]  Liu, N.-H.; Lai, S.-W.; Chen, C.-Y.; Hsieh, S.-J. Adaptive music recommendation based on user behavior in time slot. Int. J. Comput. Sci. Netw. Secur. 2009, 9, 219–227.
[34]  Nanopoulos, A.; Rafailidis, D.; Symeonidis, P.; Manolopoulos, Y. Musicbox: Personalized music recommendation based on cubic analysis of social tags. IEEE Trans. Aud. Spee. Lang. Proc. 2010, 18, 407–412, doi:10.1109/TASL.2009.2033973.
[35]  Bogdanov, D.; Haro, M.; Fuhrmann, F.; Xambó, A.; Gómez, E.; Herrera, P. Semantic audio content-based music recommendation and visualization based on user preference examples. Inform. Proc. Manag. 2012, 49, 13–33.
[36]  Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems, 2nd ed. ed.; Addison-Wesley: New York, NY, USA, 2002.
[37]  Gunn, S.R. Support Vector Machines for Classification and Regression; ISIS Technical Report: Southampton, UK, 1998.
[38]  Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Marg. Classif. 1999, 10, 61–74.
[39]  Li, Y.; Zeng, X. Sequential multi-criteria feature selection algorithm based on agent genetic algorithm. Appl. Intell. 2010, 33, 117–131, doi:10.1007/s10489-008-0153-8.
[40]  Liu, N.-H. Comparison of content-based music recommendation using different distance estimation methods. Appl. Intell. 2013, 38, 160–174, doi:10.1007/s10489-012-0363-y.
[41]  Salzberg, S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan; Morgan Kaufmann Publishers, Inc.: San Francisco, CA, USA, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133