This study was dedicated to illustrating the significance of sensor manipulation in the case of terrestrial laser scanning, which is a field now in quick development. In fact, this quickness was mainly rooted in the emergence of new sensors with better performance, while the implications of sensor manipulation have not been fully recognized by the whole community. For this technical gap, the stop-and-go mapping mode can be reckoned as one of the potential solution plans. Stop-and-go was first proposed to handle the low efficiency of traditional static terrestrial laser scanning, and then, it was re-emphasized to improve the stability of sample collections for the state-of-the-art technology of mobile laser scanning. This work reviewed the previous efforts of trying the stop-and-go mode for improving the performance of static and mobile terrestrial laser scanning and generalized their principles respectively. This work also analyzed its advantages compared to the fully-static and fully-kinematic terrestrial laser scanning, and suggested the plans with more automatic measures for raising the efficacy of terrestrial laser scanning. Overall, this literature review indicated that the stop-and-go mapping mode as a case with generic sense can verify the presumption of sensor manipulation as essential as sensor development.
References
[1]
Guarnieri, A.; Milan, N.; Vettore, A. Monitoring of complex structure for structural control using terrestrial laser scanning (TLS) and photogrammetry. Int. J. Architect Herit. 2013, 7, 54–67, doi:10.1080/15583058.2011.606595.
[2]
Hiremagalur, J.; Yen, K.S.; Lasky, T.A.; Ravani, B. Testing and performance evaluation of fixed terrestrial three-dimensional laser scanning systems for highway applications. Transport Res. Rec. 2009, 2098, 29–40, doi:10.3141/2098-04.
[3]
Zheng, G.; Moskal, M.; Kim, S.H. Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning. IEEE Trans. Geosci. Rem. Sens. 2013, 51, 777–786, doi:10.1109/TGRS.2012.2205003.
[4]
Graham, L. Mobile mapping systems overview. Photogramm. Eng. Remote Sens. 2010, 76, 222–228.
[5]
Petrie, G. An introduction to the technology mobile mapping systems. Geoinformatics 2010, 1-2, 32–43.
[6]
Zhao, H.; Shibasaki, R. A vehicle-borne urban 3-D acquisition system using single-row laser range scanners. IEEE Trans. Syst. Man Cybern. B Cybern. 2003, 33, 658–666, doi:10.1109/TSMCB.2003.814280. 18238215
Jaakkola, A.; Hyypp?, J.; Kukko, A.; Yu, X.; Kaartinen, H.; Lehtom?ki, M.; Lin, Y. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J. Photogramm. 2010, 65, 514–522, doi:10.1016/j.isprsjprs.2010.08.002.
[9]
Hyypp?, J.; Jaakkola, A.; Hyypp?, H.; Kaartinen, H.; Kukko, A.; Holopainen, M.; Zhu, L.; Vastaranta, M.; Kaasalainen, S.; Krooks, A.; et al. Map Updating and Change Detection Using Vehicle-Based Laser Scanning. Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009.
[10]
Asai, T.; Kanbara, M.; Yokoya, N. 3D Modeling of Outdoor Environments by Integrating Omni-Directional Range and Color Images. Proceedings of 5th International Conference on 3D Digital Imaging and Modeling, Ottawa, ON, Canada, 13–16 June 2005; pp. 447–454.
[11]
Witze, A. Mars rover under pressure to reach mountain goal. Nature 2013, 495, 292–293, doi:10.1038/495292a. 23518539
[12]
Nüchter, A.; Lingemann, K.; Hertzberg, J.; Surmann, H. Heuristic-Based Laser Scan Matching for Outdoor 6D SLAM. Proceedings of 28th Annual German Conference on Artificial Intelligence, Koblenz, Germany, 11–14 September 2005; pp. 304–319.
[13]
Lin, Y.; Hyypp?, J.; Kukko, A.; Jaakkola, A.; Kaartinen, H. Tree height growth measurement with single-scan airborne, static terrestrial and mobile laser scanning. Sensors 2012, 12, 12798–12813, doi:10.3390/s120912798. 23112743
[14]
Jones, S. Stop-Go Mobile Mapping. B.Sc. Thesis, University of Southern Queensland, Toowoomba, Queensland, Australia, 2010.
[15]
Choi, W.; Ryu, C.; Kim, H. Navigation of a Mobile Robot Using Mono-Vision and Mono-Audition. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan, 12–15 October 1999; pp. 686–691.
[16]
Jensen, B.; Weingarten, J.; Kolski, S.; Siegwart, R. Laser Range Imaging Using Mobile Robots: From Pose Estimation to 3D–models. Proceedings of 1st Range Imaging Research Day, Zurich, Switzerland, 8–9 September 2005; pp. 129–144.
[17]
de la Puente, R.; Rodriguez-Losada, D.; Valero, A.; Matia, F. 3D Feature Based Mapping Towards Mobile Robots' Enhanced Performance in Rescue Missions. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 1138–1143.
[18]
Heikkil?, R.; Kivim?ki, T.; Mikkonen, M.; Lasky, T.A. Stop & Go Scanning for Highways—3D Calibration Method for a Mobile Laser Scanning System. Proceedings of 27th International Symposium on Automation and Robotics in Construction, Bratislava, Slovakia, 25–27 June 2010; pp. 40–48.
[19]
Elhabiby, M.; Teskey, W.J.E. Stop-and-Go 3D Laser Scanning and Mobile Mapping. B.Sc. Thesis, University of Southern Queensland, Toowoomba, Queensland, Australia, 2010.
[20]
El-Rabbany, H. Introduction to GPS (The Global Positioning System): An Introduction, 2nd ed.; Artech House Publishers: Romulus, MI, USA, 2006; pp. 1–189.
[21]
Besl, P.J.; McKay, N. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256, doi:10.1109/34.121791.
[22]
Chen, Y.; Medioni, G. Object modeling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155, doi:10.1016/0262-8856(92)90066-C.
[23]
Perv?lz, K.; Surmann, H.; May, S. 3D Laser Scanner for Tele-Exploration Robotic Systems. Proceedings of IEEE International Workshop on Safety, Security and Rescue Robotics, Gaithersburg, MD, USA, 22–25 August 2006.
[24]
Nüchter, A. Parallelization of Scan Matching for Robotic 3D Mapping. Proceedings of the 3rd European Conference on Mobile Robots, Freiburg, Germany, 19–21 September 2007.
[25]
Nüchter, A.; Wulf, O.; Lingemann, K.; Hertzberg, J.; Wagner, B.; Surmann, H. 3D Mapping with Semantic Knowledge. Proceedings of RoboCup International Symposium 2005, Osaka, Japan, 8–10 May 2005.
[26]
Bentley, J. Multidimensional binary search trees used for associative searching. Comm. ACM 1975, 18, 509–517, doi:10.1145/361002.361007.
[27]
Chmelina, K.; Jansa, J.; Hesina, G.; Traxler, C. A 3-D laser scanning system and scan data processing method for the monitoring of tunnel deformations. J. Appl. Geodes. 2012, 6, 177–185.
[28]
Pfennigbauer, M.; Rieger, P.; Studnicka, N.; Ullrich, A. Detection of concealed objects with a mobile laser scanning system. Proc. SPIE 2009, 7323, doi:10.1117/12.828293.
[29]
Carlberg, M. Fast Surface Reconstruction and Segmentation with Terrestrial LiDAR Range Data. Technical Report No. UCB/EECS-2009-66; University of California: Berkeley, CA, USA, 18 May 2009. Available online: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-66.html (accessed on 24 June 2013).
[30]
Wulf, O.; Arras, K.; Christensen, H.; Wagner, B. 2D Mapping of Cluttered Indoor Environments by means of 3D perception. Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 18–22 April 2004; pp. 4204–4209.
[31]
Wulf, C.; Nüchter, A.; Hertzberg, J.; Wagner, B. Benchmarking urban 6D SLAM. Proceedings of Lecture Notes for IROS 2007 Workshop III, San Diego, CA, USA, 29 October–2 November 2007.
[32]
Wulf, O.; Nüchter, A.; Hertzberg, J.; Wagner, B. Benchmarking urban six-degree-of-freedom simultaneous localization and mapping. J. Field Robot. 2008, 25, 148–163, doi:10.1002/rob.20234.
[33]
Cole, D.M.; Newman, P.M. Using Laser Range Data for 3D SLAM in Outdoor Environment. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 1550–1563.
[34]
Triebel, R.; Pfaff, P.; Burgard, W. Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing. Proceedings of the IEEE/RSJ International Conference on Intelligent and Systems, Beijing, China, 9–15 October 2006; pp. 4176–4182.
[35]
Frueh, C.; Zakhor, A. Reconstructing 3D City Models by Merging Ground-Based and Airborne Views. Proceedings of 8th International Workshop on VLBV, Madrid, Spain, 18–19 September 2003; pp. 306–313.
[36]
Kümmerle, R.; Steder, B.; Dronhege, C.; Kleiner, A.; Grisetti, G.; Burgard, W. Large scale graph-based SLAM using aerial images as prior information. Auton. Robots 2011, 30, 25–39, doi:10.1007/s10514-010-9204-1.
[37]
Asai, T.; Kanbara, M.; Yokoya, N. 3D Modeling of Outdoor Scenes by Integrating stop-and-go and Continuous Scanning of Range Finder. Proceedings of the Meeting on Image Recognition and Understanding, Hyogo, Japan, July 2005; pp. 1630–1631.
[38]
Lin, Y.; Jaakkola, A.; Hyypp?, J.; Kaartinen, H. From TLS to VLS: Biomass estimation at individual tree level. Remote Sens. 2010, 2, 1864–1879, doi:10.3390/rs2081864.
[39]
Lin, Y.; Hyypp?, J.; Jaakkola, A. Combining mobile and static terrestrial laser scanners to investigate individual crown attributes during foliation. Can. J. Rem. Sens. 2011, 37, 359–375, doi:10.5589/m11-045.
[40]
Kaasalainen, S.; Kaartinen, H.; Kukko, A.; Anttila, K.; Krooks, A. Applications of mobile laser scanning in snow cover profiling. Cyosphere Discuss. 2010, 4, 2513–2522, doi:10.5194/tcd-4-2513-2010.
[41]
Lin, Y.; Hyypp?, J. Geometry and intensity based culvert detection in mobile laser scanning point clouds. J. Appl. Remote Sens. 2010, 4, doi:10.1117/1.3518442.
[42]
Colombo, O.L.; Brunker, S.; Jones, G.; Janssen, V.; Rizos, C. Testing Sub-Decimeter, Kinematic Wide-Area Positioning for Airborne Lidar Surveys Using the CORSnet-NSW Network. Proceedings of 23rd International Technical Meeting of the Satellite, Division of The Institute of Navigation, Portland, OR, USA, 21–24 September 2010; pp. 1004–1018.
[43]
Colombo, O.L.; Brunker, S.; Jones, G.; Janssen, V.; Rizos, C. Sparse network: Wide-area, sub-decimeter positioning for airborne LiDAR surveys. GPS World 2010, 21, 44–50.
[44]
Arfken, G. Mathematical Methods for Physicists, 3nd ed.; Academic Press: New York, NY, USA, 1985.
[45]
Bae, K.H.; Lichti, D.D. A method for automated registration of unorganised point clouds. ISPRS J. Photogramm. 2008, 63, 36–54, doi:10.1016/j.isprsjprs.2007.05.012.
[46]
Dold, C.; Brenner, C. Registration of Terrestrial Laser Scanning Data Using Planar Patches and Image Data. Proceedings of ISPRS Commission V Symposium on Image Engineering and Vision Metrology, Dresden, Germany, 25–27 September 2006; Volume XXXVI. Part 5, pp. 78–83.
[47]
Rieger, P.; Studnicka, N.; Pfennigbauer, M. Boresight Alignment Method for Mobile Laser Scanning Systems. Proceedings of RSPRS, Moscow, Russia, 10–11 November 2008.