全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Extending the IEEE 802.15.4 Security Suite with a Compact Implementation of the NIST P-192/B-163 Elliptic Curves

DOI: 10.3390/s130809704

Keywords: wireless sensor networks, FPGA, 802.15.4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Typically, commercial sensor nodes are equipped with MCUsclocked at a low-frequency (i.e., within the 4–12 MHz range). Consequently, executing cryptographic algorithms in those MCUs generally requires a huge amount of time. In this respect, the required energy consumption can be higher than using a separate accelerator based on a Field-programmable Gate Array (FPGA) that is switched on when needed. In this manuscript, we present the design of a cryptographic accelerator suitable for an FPGA-based sensor node and compliant with the IEEE802.15.4 standard. All the embedded resources of the target platform (Xilinx Artix-7) have been maximized in order to provide a cost-effective solution. Moreover, we have added key negotiation capabilities to the IEEE 802.15.4 security suite based on Elliptic Curve Cryptography (ECC). Our results suggest that tailored accelerators based on FPGA can behave better in terms of energy than contemporary software solutions for motes, such as the TinyECC and NanoECC libraries. In this regard, a point multiplication (PM) can be performed between 8.58- and 15.4-times faster, 3.40- to 23.59-times faster (Elliptic Curve Diffie-Hellman, ECDH) and between 5.45- and 34.26-times faster (Elliptic Curve Integrated Encryption Scheme, ECIES). Moreover, the energy consumption was also improved with a factor of 8.96 (PM).

References

[1]  Sghaier, N.; Mellouk, A.; Augustin, B.; Amirat, Y.; Marty, J.; Khoussa, M.E.A.; Abid, A.; Zitouni, R. Wireless Sensor Networks for Medical Care Services. Proceedings of the 7th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, Turkey, 4–8 July 2011; pp. 571–576.
[2]  Dishongh, T.; McGrath, M. Wireless Sensor Networks for Healthcare Applications; Artech House: Norwood, MA, USA, 2010.
[3]  Demchak, B.; Kerr, J.; Raab, F.; Patrick, K.; Kruger, I.H. PALMS: A Modern Coevolution of Community and Computing Using Policy Driven Development. Proceedings of the 45th Hawaii International Conference on System Sciences, HICSS'12, Maui, HI, USA, 4–7 January 2012; pp. 2735–2744.
[4]  Part 15.4. Wireless Medium Access Control and Physical Layer Specifications for Low-Rate Wireless Personal Area Networks; IEEE Standard for Information Technology; IEEE: New York, NY, USA, 2006; pp. 1–323.
[5]  De la Piedra, A.; Braeken, A.; Touhafi, A. Sensor systems based on FPGAs and their applications: A survey. Sensors 2012, 12, 12235–12264.
[6]  Krasteva, Y.; Portilla, J.; de la Torre, E.; Riesgo, T. Embedded runtime reconfigurable nodes for wireless sensor networks applications. IEEE Sens. J. 2011, 11, 1800–1810.
[7]  Berder, O.; Sentieys, O. PowWow: Power Optimized Hardware/Software Framework for Wireless Motes. Proceedings of the 23rd International Conference on Architecture of Computing Systems (ARCS), Hannover, Germany, 22–25 February 2010; pp. 1–5.
[8]  De la Piedra, A.; Touhafi, A.; Cornetta, G. An IEEE 802.15.4 Baseband SoC for Tracking Applications in the Medical Environment Based on Actel Cortex-M1 Soft-core. Proceedings of the 17th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), Enschede, Netherlands, 24–25 November 2010; pp. 1–5.
[9]  Hamalainen, P.; Hannikainen, M.; Hamalainen, T. Efficient Hardware Implementation of Security Processing for IEEE 802.15.4 Wireless Networks. Proceedings of the 48th Midwest Symposium on Circuits and Systems, Cincinnati, OH, USA, 7–10 August 2005; Volume 1, pp. 484–487.
[10]  Song, O.; Kim, J. An Efficient Design of Security Accelerator for IEEE 802.15.4 Wireless Sensor Networks. Proceedings of the 7th IEEE Conference on Consumer Communications and Networking Conference, CCNC'10, Las Vegas, NV, USA, 9–12 January 2010; pp. 522–526.
[11]  Güneysu, T.; Paar, C. Ultra High Performance ECC over NIST Primes on Commercial FPGAs. Proceeding sof the 10th International Workshop on Cryptographic Hardware and Embedded Systems, CHES ' 08, Washington, DC, USA, 10–13 August 2008; pp. 62–78.
[12]  Moore, C.; Hanley, N.; McAllister, J.; O'Neill, M.; O'Sullivan, E.; Cao, X. Targeting FPGA DSP Slices for a Large Integer Multiplier for Integer Based FHE. .
[13]  De Dinechin, F.; Pasca, B. Large Multipliers with Fewer DSP Blocks. In FPL; Danek, M., Kadlec, J., Nelson, B.E., Eds.; IEEE: New York, United States, 2009; pp. 250–255.
[14]  Announcing the Advanced Encryption Standard (AES); Federal Information Processing Standards Publication 197; FIPS, 2001.
[15]  Whiting, D.; Housley, R.; Ferguson, N. . Request for Comments (RFC) 3610 2003.
[16]  Daemen, J.; Rijmen, V. The Design of Rijndael; Springer-Verlag Inc.: Secaucus, NJ, USA, 2002.
[17]  Chodowiec, P.; Gaj, K. Very compact FPGA implementation of the AES algorithm. Lect. Notes Comput. Sci. 2003, 2779, 319–333.
[18]  National Institute of Standards and Technology. FIPS PUB 186-2: Digital Signature Standard (DSS), Available online: http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf (accessed on 11 April 2013).
[19]  Miller, V.S. Use of Elliptic Curves in Cryptography. In CRYPTO; Williams, H.C., Ed.; Springer: New York, NY, USA, 1985; Volume 218, pp. 417–426.
[20]  Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209.
[21]  Cohen, H.; Frey, G.; Avanzi, R.; Doche, C.; Lange, T.; Nguyen, K.; Vercauteren, F. Handbook of Elliptic and Hyperelliptic Curve Cryptography; Discrete Mathematics and Its Applications Taylor & Francis: Boca Raton, United States, 2010.
[22]  Xilinx UG479 7 Series DSP48E1 Slice User Guide, Xilinx. Available online: http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf (accessed on 11 April 2013).
[23]  Koren, I. Computer Arithmetic Algorithms, 2nd ed. ed.; A.K. Peters, Ltd.: Natick, MA, USA, 2001.
[24]  Deschamps, J.P. Hardware Implementation of Finite-Field Arithmetic, 1st ed. ed.; McGraw-Hill Inc.: New York, NY, USA, 2009.
[25]  Booth, A.D. A signed binary multiplication technique. Q. J. Mech. Appl. Math 1951, 4, 236–240.
[26]  Macsorley, O.L. High-speed arithmetic in binary computers. Proc. IRE 1961, 49, 67–91.
[27]  Diffie, W.; Hellman, M.E. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654.
[28]  Encyclopedia of Cryptography and Security, 2nd Ed.; van Tilborg, H.C.A., Jajodia, S., Eds.; Springer: New York, NY, USA, 2011.
[29]  Martínez, V.G.; álvarez, F.H.; Encinas, L.H.; ávila, C.S. A Comparison of the Standardized Versions of ECIES. Proceedings of the 2010 Sixth International Conference on Information Assurance and Security (IAS), Atlanta, GA, USA, 23–25 August 2010; pp. 1–4.
[30]  Research, C. Standards for efficient cryptography, SEC 1: Elliptic Curve Cryptography. Version 1.0, 2000, Available online: http://www.secg.org/collateral/sec1_final.pdf (accessed on 11 April 2013).
[31]  Richard Herveille, O. Wishbone B4, WISHBONE System-on-Chip (SoC) Interconnection Architecturefor Portable IP Cores, OpenCores, 2010. Available online: http://cdn.opencores.org/downloads/wbspec_b4.pdf (accessed on 11 April 2013).
[32]  Xilinx Power Methodology Guide. Xilinx, Available online: http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ug786_PowerMethodology.pdf (accessed on 11 April 2013).
[33]  Sharif, A.; Potdar, V.; Chang, E. Wireless Multimedia Sensor Network Technology: A Survey. Proceedings of the 7th IEEE International Conference on Industrial Informatics, INDIN, Cardiff, Wales, UK, 24–26 June 2009; pp. 606–613.
[34]  Szczechowiak, P.; Oliveira, L.B.; Scott, M.; Collier, M.; Dahab, R. NanoECC: Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. Proceedings of the 5th European Conference on Wireless Sensor Networks, EWSN'08, Bologna, Italy, 30 January–1 February 2008; Springer-Verlag: Berlin/Heidelberg, Germany, 2008; pp. 305–320.
[35]  Liu, A.; Ning, P. TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor Networks. Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IPSN'08, St. Louis, MO, USA, 22–24 April 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 245–256.
[36]  Healy, M.; Newe, T.; Lewis, E. Efficiently securing data on a wireless sensor network. J. Phys. Conf. Ser. 2007, 76, 012063.
[37]  Barthe, L.; Benoit, P.; Torres, L. Investigation of a Masking Countermeasure against Side-Channel Attacks for RISC-based Processor Architectures. Proceedings of the 2010 International Conference on Field Programmable Logic and Applications, FPL'10, Milano, Italy, 31 August–2 September 2010; IEEE Computer Society: Washington, DC, USA, 2010; pp. 139–144.
[38]  Tiri, K.; Verbauwhede, I. A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. Proceedings of the Conference on Design, Automation and Test in Europe-Volume 1, Paris, France, 16–20 February 2004; IEEE Computer Society: Washington, DC, USA, 2004; p. 10246.
[39]  Bajard, J.C.; Imbert, L.; Liardet, P.Y.; Teglia, Y. Leak Resistant Arithmetic. Lect. Note. Comput. Sci. 2004, 3156, 62–75.
[40]  Jun, B.; Kocher, P. The Intel Random Number Generator. Available online: http://www.cryptography.com/public/pdf/IntelRNG.pdf (accessed on 11 April 2013).
[41]  Gu, X.; Zhan, M. Multi-output LFSR based uniform pseudo random number generator. Geomat. Inf. Sci. Wuhan Univ. 2010, 35, 566–569.
[42]  Duan, Y.; Zhang, H. FPGA-based Multi-bit All State Pseudo-Random Sequences Generator. Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 858–861.
[43]  Cerda, J.C.; Martinez, C.D.; Comer, J.M.; Hoe, D.H.K. An Efficient FPGA Random Number Generator using LFSRs and Cellular Automata. Proceedings of the Midwest Symposium on Circuits and Systems Conference (MWSCAS), Boise, ID, USA, 5–8 August 2012; pp. 912–915.
[44]  Fischer, V.; Drutarovsky, M.; ?imka, M.; Celle, F. Simple PLL-based True Random Number Generator for Embedded Digital Systems. Proceedings of IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop—DDECS 2004, Tatranska Lomnica, Slovakia, 18–21 April 2004; pp. 129–136.
[45]  Golic, J. New methods for digital generation and postprocessing of random data. IEEE Trans. Comput. 2006, 55, 1217–1229.
[46]  Kohlbrenner, P.; Gaj, K. An Embedded True Random Number Generator for FPGAs. Proceedings of the 12th International Symposium on Field Programmable Gate Arrays, 2004 ACM/SIGDA; Tessier, R., Schmit, H., Eds.; ACM: New York, NY, USA, 2004; pp. 71–78.
[47]  Sunar, B.; Martin, W.J.; Stinson, D.R. A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 2007, 58, 109–119.
[48]  Schellekens, D.; Preneel, B.; Verbauwhede, I. FPGA Vendor Agnostic True Random Number Generator. International Conference on Field Programmable Logic and Applications, FPL'06, New York, NY, USA, 28–30 August 2006; pp. 1–6.
[49]  Odonnell, C.W.; Suh, G.E.; Devadas, S. PUF-based Random Number Generation. MIT CSAIL CSG Technical Memo 481, 2004. Available online: http://csg.csail.mit.edu/pubs/memos/Memo-481/Memo-481.pdf (accessed on 27 July 2013).
[50]  Gyorfi, T.; Cret, O.; Suciu, A. High Performance True Random Number Generator Based on FPGA Block RAMs. Proceedings of the IEEE International Symposium on Parallel Distributed Processing, 2009 IPDPS, Rome, Italy, 23–29 May 2009; pp. 1–8.
[51]  Güneysu, T. True Random Number Generation in Block Memories of Reconfigurable Devices. Proceedings of the 2010 International Conference on Field-Programmable Technology (FPT), Milano, Italy, 31 August–2 September 2010; pp. 200–207.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133