We report a high-speed (~2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement.
References
[1]
Kersey, A.D.; Berkoff, T.A.; Morey, W.W. High-resolution fiber Grating based strain sensor with interferometric wavelength-shift detection. Electron. Lett. 1992, 28, 236–238.
[2]
Melle, S.M.; Liu, K.; Measures, R.M. A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photon. Technol. Lett. 1992, 4, 1539–1541.
[3]
Kersey, A.D.; Berkoff, T.A.; Morey, W.W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Opt. Lett. 1993, 8, 33–39.
[4]
Bang, H.-J.; Jun, S.-M; Kim, C.-G; Bang, H. Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors. Meas. Sci. Technol. 2005, 16, 813–820.
[5]
Kim, C.S.; Lee, T.H.; Yu, Y.S.; Han, Y.G.; Lee, S.B.; Jeong, M.Y. Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters. Opt. Express 2006, 14, 8546–8551.
[6]
Hongo, A.; Kojima, S.; Komatsuzaki, S. Applications of fiber Bragg grating sensors, and high-speed interrogation techniques. Struct. Control Health Monit. 2005, 12, 269–282.
[7]
Yun, S.H.; Richardson, D.J.; Kim, B.Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Opt. Lett. 1998, 23, 843–845.
[8]
Jung, E.J.; Kim, C.-S.; Jeong, M.Y.; Kim, M.K.; Jeon, M.Y.; Jung, W.; Chen, Z. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Opt. Express 2008, 16, 16552–16560.
[9]
Isago, R.; Nakamura, K. A high reading rate fiber Bragg grating sensor system using a high-speed swept light source based on fiber vibrations. Meas. Sci. Technol. 2009, 20, 034021.
[10]
Nakazaki, Y.; Yamashita, S. Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing. Opt. Express 2009, 17, 8310–8318.
[11]
Lee, B.C.; Jung, E.-J.; Kim, C.-S.; Jeon, M.Y. Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 μm Fourier domain mode-locked wavelength-swept laser. Meas. Sci. Technol. 2010, 21, 094008.
[12]
Ahmad, H.; Saat, N.K.; Harun, S.W. S-band erbium-doped fiber ring laser using a fiber Bragg grating. Laser. Phys. Lett. 2005, 2, 369–371.
[13]
Fu, H.Y.; Liu, H.L.; Dong, X.; Tam, H.Y.; Wai, P.K.A.; Lu, C. High-speed fibre Bragg grating sensor interrogation using dispersioncompensation fibre. Electron. Lett. 2008, 44, 618–619.
[14]
Fu, Z.H.; Wang, Y.X.; Yang, D.Z.; Shen, Y.H. Single-frequency linear cavity erbium-doped fiber laser for fiber-optic sensing applications. Laser. Phys. Lett. 2009, 6, 594–597.
[15]
Mohd Nasir, M.N.; Yusoff, Z.; Al-Mansoori, M.H.; Abdul Rashid, H.A.; Choudhury, P.K. Low threshold and efficient multi-wavelength Brillouinerbium fiber laser incorporating a fiber Bragg grating filter with intra-cavity pre-amplified Brillouin pump. Laser. Phys. Lett. 2009, 6, 54–58.
[16]
Schultz, S.; Kunzler, W.; Zhu, Z.; Wirthlin, M.; Selfridge, R.; Propst, A.; Zikry, M.; Peters, K. Full-spectrum interrogation of fiber Bragg grating sensors for dynamic measurements in composite laminates. Smart Mater. Struct. 2009, 18, 115015.
[17]
Yamashita, S.; Nakazaki, Y.; Konishi, R.; Kusakari, O. Wide and fast wavelength-swept fiber laser based on dispersion tuning for dynamic sensing. J. Sens. 2009, 2009, 572835.
[18]
Jeon, M.Y.; Kim, N.; Han, S.-P; Ko, H.; Ryu, H.-C.; Yee, D.-S.; Park, K.H. Rapidly frequency-swept optical beat source for continuous wave terahertz generation. Opt. Express 2011, 19, 18364–18371.
[19]
Yun, S.H.; Boudoux, C.; Tearney, G.J.; Bouma, B.E. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength swept filter. Opt. Lett. 2003, 28, 1981–1983.
Huber, R.; Wojtkowski, M.; Fujimoto, J.G.; Jiang, J.Y.; Cable, A.E. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 2005, 13, 10523–10538.
[22]
Lee, S.-W.; Kim, C.-S; Kim, B.-M. External-line cavity wavelength-swept source at 850 nm for optical coherence tomography. IEEE Photon. Technol. Lett. 2007, 19, 176–178.
[23]
Huber, R.; Wojtkowski, M.; Fujimoto, J.G. Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express 2006, 14, 3225–3237.
[24]
Jeon, M.Y.; Zhang, J.; Wang, Q.; Chen, Z. High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple. Opt. Express 2008, 16, 2547–2554.
[25]
Lee, S.-W.; Song, H.-W.; Jung, M.-Y.; Kim, S.-H. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography. Opt. Express 2011, 19, 21227–21237.
[26]
Tsai, M.-T.; Chang, F.-Y. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser. Laser Phys. 2012, 22, 791–796.
[27]
Lee, B.-C.; Eom, T.-J.; Jeon, M.Y. k-domain linearization using fiber Bragg grating array based on Fourier domain optical coherence tomography. Korean J. Opt. Photon. 2011, 22, 72–76.
[28]
Eigenwillig, C.M.; Biedermann, B.R.; Palte, G.; Huber, R. K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. Opt. Express 2008, 16, 8916–8937.
[29]
Park, I.G.; Choi, B.K.; Kwon, Y.S.; Jeon, M.Y. Performance comparison of fiber Bragg gratings sensor interrogation using two kinds of wavelength-swept lasers. Proc. SPIE 2012, 8421, 411–414.
[30]
Lee, S.-W.; Song, H.-W.; Kim, B.-K.; Jung, M.-Y.; Kim, S.-H.; Cho, J.D.; Kim, C.-S. Fourier Domain optical coherence tomography for retinal imaging with 800-nm swept source: Real-time resampling in k-domain. J. Opt. Soc. Korea 2011, 15, 293–299.
[31]
National Instruments. Available online: www.ni.com/white-paper/3770/en (accessed on 18 August 2012).