全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

DOI: 10.3390/s130911498

Keywords: biosensor, acetylcholinesterase, sarin, tabun, soman, VX, inhibitor, screen printed electrode, voltammetry, amperometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10 ?12 mol/L for sarin, 6.31 × 10 ?12 mol /L for soman, 6.17 × 10 ?11 mol/L for tabun, and 2.19 × 10 ?11 mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples.

References

[1]  Pohanka, M. Acetylcholinesterase inhibitors: A patent review (2008 - Present). Expert Opin. Ther. Pat. 2012, 22, 871–886.
[2]  Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 2011, 155, 219–229.
[3]  Clement, J.G. Toxicity of the combined nerve agents GB/GF in mice: Efficacy of atropine and various oximes as antidotes. Arch. Toxicol. 1994, 68, 64–66.
[4]  Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther. 1993, 58, 51–66.
[5]  Pohanka, M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett. 2013, 46, 1849–1868.
[6]  Miao, Y.; He, N.; Zhu, J.J. History and new developments of assay for cholinesterase activity and inhibition. Chem. Rev. 2010, 110, 5216–5234.
[7]  Andreescu, S.; Marty, J.L. Twenty years research in cholinesterase biosensors: From basic research to practical applications. Biomol. Eng. 2006, 23, 1–15.
[8]  Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31.
[9]  Jokanovic, M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009, 190, 107–115.
[10]  Furtado, M.D.; Rossetti, F.; Chanda, S.; Yourick, D. Exposure to nerve agents: From status epilepticus to neuroinflammation, brain damage, neurogenesis and epilepsy. Neurotoxicology 2012, 33, 1476–1490.
[11]  Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95.
[12]  Pohanka, M. Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal. Lett. 2012, 45, 367–374.
[13]  Pohanka, M.; Fusek, J.; Adam, V.; Kizek, R. Carbofuran assay using gelatin based biosensor with acetylcholinesterase as a recognition element. Int. J. Electrochem. Sci. 2013, 8, 71–79.
[14]  Turdean, G.L.; Popescu, I.C.; Oniciu, L.; Thevenot, D.R. Sensitive detection of organophosphorus pesticides using a needle type amperometric acetylcholinesterase-based bioelectrode. Thiocholine electrochemistry and immobilised enzyme inhibition. J. Enzyme Inhib. Med. Chem. 2002, 17, 107–115.
[15]  Yang, L.; Wang, G.; Liu, Y. An acetylcholinesterase biosensor based on platinum nanoparticles-carboxylic graphene-nafion-modified electrode for detection of pesticides. Anal. Biochem. 2013, 437, 144–149.
[16]  Jeanty, G.; Wojciechowska, A.; Marty, J.L.; Trojanowicz, M. Flow-injection amperometric determination of pesticides on the basis of their inhibition of immobilized acetylcholinesterases of different origin. Anal. Bioanal. Chem. 2002, 373, 691–695.
[17]  Bucur, M.P.; Bucur, B.; Radu, G.L. Critical evaluation of acetylcholine iodide and acetylthiocholine chloride as substrates for amperometric biosensors based on acetylcholinesterase. Sensors 2013, 13, 1603–1613.
[18]  Hubaux, A.; Vos, G. Decision and detection limits for linear calibration curves. Anal. Chem. 1970, 42, 849–855.
[19]  Luo, W.; Li, H.; Zhang, Y.; Ang, C.Y.W. Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B 2001, 753, 253–257.
[20]  Liu, S.Q.; Zheng, Z.Z.; Li, X.Y. Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal. Bioanal. Chem. 2013, 405, 63–90.
[21]  Seto, Y.; Kanamori-Kataoka, M.; Tsuge, K.; Ohsawa, I.; Iura, K.; Itoi, T.; Sekiguchi, H.; Matsushita, K.; Yamashiro, S.; Sano, Y.; et al. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction. Anal. Chem. 2013, 85, 2659–2666.
[22]  Mwila, K.; Burton, M.H.; Van Dyk, J.S.; Pletschke, B.I. The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ. Monit. Assess. 2013, 185, 2315–2327.
[23]  Vymazalova, K.; Halamek, E.; Kadlcak, J. Photocolorimetric biosensor for detection of cholinergic organophosphorus compounds. Def. Sci. J. 2012, 62, 399–403.
[24]  Chen, C.H.; Yang, K.L. A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products. Sens. Actuators B-Chem. 2013, 181, 368–374.
[25]  Chen, D.; Wang, J.J.; Xu, Y.; Li, D.H.; Zhang, L.Y.; Li, Z.X. Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor. Biosens. Bioelectron. 2013, 41, 163–167.
[26]  Upadhyay, L.S.B.; Verma, N. Enzyme inhibition based biosensors: A review. Anal. Lett. 2013, 46, 225–241.
[27]  Arduini, F.; Guidone, S.; Amine, A.; Palleschi, G.; Moscone, D. Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens. Actuators B-Chem. 2013, 179, 201–208.
[28]  Huang, X.; Tu, H.Y.; Zhu, D.H.; Du, D.; Zhang, A.D. A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance. Talanta 2009, 78, 1036–1042.
[29]  Arduini, F.; Amine, A.; Moscone, D.; Ricci, F.; Palleschi, G. Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Anal. Bioanal. Chem. 2007, 388, 1049–1057.
[30]  Schulze, H.; Muench, S.B.; Villatte, F.; Schmid, R.D.; BAchmann, T.T. Insecticide detection through protein engineering of nippostrongylus brasiliensis acetylcholinesterase B. Anal. Chem. 2005, 77, 5823–5830.
[31]  Bartolini, M.; Cavrini, V.; Andrisano, V. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. J. Chromatogr. A 2007, 1144, 102–110.
[32]  de los Rios, C. Cholinesterase inhibitors: A patent review (2007–2011). Expert Opin. Ther. Pat. 2012, 22, 853–869.
[33]  Holzgrabe, U.; Kapkova, P.; Alptuzun, V.; Scheiber, J.; Kugelmann, E. Targeting acetylcholinesterase to treat neurodegeneration. Expert. Opin. Ther. Tar. 2007, 11, 161–179.
[34]  Pietsch, M.; Christian, L.; Inhester, T.; Petzold, S.; Gutschow, M. Kinetics of inhibition of acetylcholinesterase in the presence of acetonitrile. FEBS J. 2009, 276, 2292–2307.
[35]  Turdean, G.L.; Turdean, M.S. Synergetic effect of organic solvents and paraoxon on the immobilized acetylcholinesterase. Pest. Biochem. Physiol. 2008, 90, 73–81.
[36]  Fekonja, O.; Zorec-Karlovsek, M.; El Kharbili, M.; Fournier, D.; Stojan, J. Inhibition and protection of cholinesterases by methanol and ethanol. J. Enzyme Inhib. Med. Chem. 2007, 22, 407–415.
[37]  Mionetto, N.; Marty, J.L. Acetylcholinestrase in organic-solvents for detection of pesticides - biosensors application. Biosens. Bioelectron. 1994, 9, 463–470.
[38]  Sheijooni-Fumani, N.; Hassan, J.; Yousefi, S.R. Determination of aflatoxin B1 in cereals by homogeneous liquid-liquid extraction coupled to high performance liquid chromatography-fluorescence detection. J. Sep. Sci. 2011, 34, 1333–1337.
[39]  Pohanka, M. Spectrophotomeric assay of aflatoxin B1 using acetylcholinesterase immobilized on standard microplates. Anal. Lett. 2013, 46, 1306–1315.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133