Deployment is a critical issue affecting the quality of service of camera networks. The deployment aims at adopting the least number of cameras to cover the whole scene, which may have obstacles to occlude the line of sight, with expected observation quality. This is generally formulated as a non-convex optimization problem, which is hard to solve in polynomial time. In this paper, we propose an efficient convex solution for deployment optimizing the observation quality based on a novel anisotropic sensing model of cameras, which provides a reliable measurement of the observation quality. The deployment is formulated as the selection of a subset of nodes from a redundant initial deployment with numerous cameras, which is an ?0 minimization problem. Then, we relax this non-convex optimization to a convex ?1 minimization employing the sparse representation. Therefore, the high quality deployment is efficiently obtained via convex optimization. Simulation results confirm the effectiveness of the proposed camera deployment algorithms.
References
[1]
Hsieh, T.T. Using Sensor Networks for Highway and Traffic Applications. IEEE Potentials 2004, 23, 13–16, doi:10.1109/MP.2004.1289992.
[2]
Du, X.; Chen, H.H. Security in Wireless Sensor Networks. IEEE Wirel. Commun. 2008, 15, 60–66.
[3]
Burrell, J.; Brooke, T.; Beckwith, R. Vineyard Computing: Sensor Networks in Agricultural Production. IEEE Pervasive Comput. 2004, 3, 38–45, doi:10.1109/MPRV.2004.1269130.
[4]
Qureshi, F.; Terzopoulos, D. Smart Camera Networks in Virtual Reality. Proc. IEEE 2008, 96, 1640–1656, doi:10.1109/JPROC.2008.928932.
[5]
Sankaranarayanan, A.; Veeraraghavan, A.; Chellappa, R. Object Detection, Tracking and Recognition for Multiple Smart Cameras. Proc. IEEE 2008, 96, 1606–1624, doi:10.1109/JPROC.2008.928758.
[6]
Chen, S.; Li, Y. Vision Sensor Planning for 3-D Model Acquisition. IEEE Trans. Syst., Man, Cybern. B 2005, 35, 894–904, doi:10.1109/TSMCB.2005.846907.
[7]
Canedo-Rodriguez, A.; Iglesias, R.; Regueiro, C.V.; Alvarez-Santos, V.; Pardo, X.M. Self-Organized Multi-Camera Network for a Fast and Easy Deployment of Ubiquitous Robots in Unknown Environments. Sensors 2013, 13, 426–454.
[8]
Erdem, U.M.; Sclaroff, S. Automated Camera Layout to Satisfy Task-Specific and Floor Plan-Specific Coverage Requirements. Comput. Vis. Image Underst. 2006, 103, 156–169, doi:10.1016/j.cviu.2006.06.005.
[9]
Xia, F. Wireless Sensor Technologies and Applications. Sensors 2009, 9, 8824–8830, doi:10.3390/s91108824. 22291538
Li, J.; Andrew, L.L.; Foh, C.H.; Zukerman, M.; Chen, H.H. Connectivity, Coverage and Placement in Wireless Sensor Networks. Sensors 2009, 9, 7664–7693, doi:10.3390/s91007664. 22408474
[12]
Ai, J.; Abouzeid, A.A. Coverage by Directional Sensors in Randomly Deployed Wireless Sensor Networks. J. Comb. Optim. 2006, 11, 21–41, doi:10.1007/s10878-006-5975-x.
[13]
Yu, C.; Sharma, G. Camera Scheduling and Energy Allocation for Lifetime Maximization in User-Centric Visual Sensor Networks. IEEE Trans. Image Proc. 2010, 19, 2042–2055, doi:10.1109/TIP.2010.2046794.
[14]
Newell, A.; Akkaya, K. Distributed Collaborative Camera Actuation for Redundant Data Elimination in Wireless Multimedia Sensor Networks. Ad Hoc Netw. 2011, 9, 514–527, doi:10.1016/j.adhoc.2010.08.003.
[15]
Lin, Y.T.; Saluja, K.K.; Megerian, S. Adaptive Cost Efficient Deployment Strategy for Homogeneous Wireless Camera Sensors. Ad Hoc Netw. 2011, 9, 713–726, doi:10.1016/j.adhoc.2010.07.001.
[16]
Wang, Y.C.; Tseng, Y.C. Distributed Deployment Schemes for Mobile Wireless Sensor Networks to Ensure Multilevel Coverage. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 1280–1294, doi:10.1109/TPDS.2007.70808.
[17]
Conci, N.; Lizzi, L. Camera Placement Using Particle Swarm Optimization in Visual Surveillance Applications. Proceedings of 2009 16th IEEE International Conference on Image Processing, Cairo, Egypt, 7–10 November 2009; pp. 3485–3488.
Indu, S.; Chaudhury, S.; Mittal, N.; Bhattacharyya, A. Optimal Sensor Placement for Surveillance of Large Spaces. Proceedings of Third ACM/IEEE International Conference on Distributed Smart Cameras, Como, Italy, 30 August–2 September 2009; pp. 1–8.
[20]
Yao, Y.; Chen, C.H.; Abidi, B.; Page, D.; Koschan, A.; Abidi, M. Can You See Me Now? Sensor Positioning for Automated and Persistent Surveillance. IEEE Trans. Syst., Man, Cybern. B 2010, 40, 101–115, doi:10.1109/TSMCB.2009.2017507.
[21]
Ozturk, C.; Karaboga, D.; Gorkemli, B. Probabilistic Dynamic Deployment of Wireless Sensor Networks by Artificial Bee Colony Algorithm. Sensors 2011, 11, 6056–6065, doi:10.3390/s110606056. 22163942
[22]
Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306, doi:10.1109/TIT.2006.871582.
[23]
Donoho, D.L. For Most Large Underdetermined Systems of Linear Equations the Minimal 1-norm Solution is also the Sparsest Solution. Comm. Pure Appl. Math 2004, 59, 797–829.
[24]
Candes, E.; Tao, T. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425, doi:10.1109/TIT.2006.885507.
[25]
Yang, A.; Gastpar, M.; Bajcsy, R.; Sastry, S. Distributed Sensor Perception via Sparse Representation. Proc. IEEE 2010, 98, 1077–1088, doi:10.1109/JPROC.2010.2040797.
[26]
Adlakha, S.; Srivastava, M. Critical Density Thresholds for Coverage in Wireless Sensor Networks. IEEE Wirel. Commun. Netw. 2003, 3, 1615–1620.
[27]
Mavrinac, A.; Chen, X. Modeling Coverage in Camera Networks: A Survey. Int. J. Comput. Vis. 2013, 101, 205–226, doi:10.1007/s11263-012-0587-7.
[28]
Lee, D.; Lin, A. Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 1986, 32, 276–282, doi:10.1109/TIT.1986.1057165.
[29]
Yao, Y.; Chen, C.H.; Abidi, B.; Page, D.; Koschan, A.; Abidi, M. Sensor Planning for Automated and Persistent Object Tracking with Multiple Cameras. Proceedings of IEEE Conference Computer Vision and Pattern Recognition, Como,Italy, 30 August–2 September 2008; pp. 1–8.
[30]
Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: New York, NY, USA, 2004.
[31]
Joshi, S.; Boyd, S. Sensor Selection via Convex Optimization. IEEE Trans. Signal Proc. 2009, 57, 451–462, doi:10.1109/TSP.2008.2007095.
[32]
Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming (v1.21); 2011.
[33]
Grant, M.; Boyd, S. Graph Implementations for Nonsmooth Convex Programs. In Recent Advances in Learning and Control; Blondel, V., Boyd, S., Kimura, H., Eds.;. Lecture Notes in Control and Information Sciences Springer-Verlag Limited: Berlin, Germany, 2008; pp. 95–110.
[34]
Subbarao, M.; Gurumoorthy, N. Depth recovery from blurred edges. Proceedings of 1998 IEEE 1988 Conference on Computer Society Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988; pp. 498–503.
[35]
Subbarao, M.; Surya, G. Depth from Defocus: A Spatial Domain Approach. Int. J. Comput. Vis. 1994, 13, 271–294, doi:10.1007/BF02028349.
[36]
Weng, J.; Cohen, P.; Herniou, M. Camera Calibration with Distortion Models and Accuracy Evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 965–980, doi:10.1109/34.159901.
[37]
Hammersley, A.; Svensson, S.; Thompson, A. Calibration and Correction of Apatial Distortions in 2D Detector systems. Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 1994, 346, 312–321.