全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Narrow and Deep Fano Resonances in a Rod and Concentric Square Ring-Disk Nanostructures

DOI: 10.3390/s130911350

Keywords: Fano resonance, plasmonic nanostructures, optical sensor, Fano linewidth spectral contrast ratio, figure of merit

Full-Text   Cite this paper   Add to My Lib

Abstract:

Localized surface plasmon resonances (LSPRs) in metallic nanostructures have been studied intensely in the last decade. Fano interference is an important way to decrease the resonance linewidth and enhance the spectral detection resolution, but realizing a Fano lineshape with both a narrow linewidth and high spectral contrast-ratio is still challenging. Here we propose a metallic nanostructure consisting of a concentric square ring-disk (CSRD) nanostructure and an outside nanorod. Fano linewidth and spectral contrast ratio can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to 5 nm, the quadrupolar Fano linewidth is of 0.025 eV, with a contrast ratio of 80%, and the figure of merit reaches 15.

References

[1]  Le, F.; Brandl, D.W.; Urzhumov, Y.A.; Wang, H.; Kundu, J.; Halas, N.J.; Aizpurua, J.; Nordlander, P. Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano 2008, 2, 707–718.
[2]  Christ, A.; Martin, O.J.F.; Ekinci, Y.; Gippius, N.A.; Tikhodeev, S.G. Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 2008, 8, 2171–2175.
[3]  Christ, A.; Ekinci, Y.; Solak, H.H.; Gippius, N.A.; Tikhodeev, S.G.; Martin, O.J.F. Controlling the Fano interference in a plasmonic lattice. Phys. Rev. B 2007, 76, 201405.
[4]  Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866–1878.
[5]  Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterial. Phys. Rev. Lett. 2008, 101, 047401.
[6]  Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.; Moshchalkov, V.V.; Dorpe, P.V.; Nordlander, P.; Maier, S.A. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 2009, 9, 1663–1667.
[7]  Brown, L.V.; Sobhani, H.; Lassiter, J.B.; Nordlander, P.; Halas, N.J. Heterodimers: Plasmonic properties of mismatched nanoparticle pairs. ACS Nano 2010, 4, 819–832.
[8]  Bachelier, G.; Russier-Antoine, I.; Benichou, E.; Jonin, C.; Fatti, N.D.; Vallée, F.; Brevet, P.F. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys. Rev. Lett. 2008, 101, 197401.
[9]  Fan, J.A.; Wu, C.; Bao, K.; Bao, J.; Bardhan, R.; Halas, N.J; Manoharan, V.N.; Nordlander, P.; Shvets, G.; Capasso, F. Self-assembled plasmonic nanoparticle clusters. Science 2010, 328, 1135–1138.
[10]  Hentschel, M.; Saliba, M.; Vogelgesang, R.; Giessen, H.; Alivisatos, A.P.; Liu, N. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 2010, 10, 2721–2726.
[11]  Frimmer, M.; Coenen, T.; Koenderink, A.F. Signature of a Fano resonance in a plasmonic metamolecule's local density of optical states. Phys. Rev. Lett. 2012, 108, 077404.
[12]  Alonso-Gonzalez, P.; Schnell, M.; Sarriugarte, P.; Sobhani, H.; Wu, C.; Arju, N.; Khanikaev, A.; Golmar, F.; Albella, P.; Arzubiaga, L.; et al. Real-space mapping of Fano interference in plasmonic metamolecules. Nano Lett. 2011, 11, 3922–3926.
[13]  Hao, F.; Sonnefraud, Y.; Dorpe, P.V.; Maier, S.A.; Halas, N.J.; Nordlander, P. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008, 8, 3983–3988.
[14]  Rahmani, M.; Lei, D.Y.; Giannini, V.; Luk'yanchuk, B.; Ranjbar, M.; Liew, T.Y.F.; Hong, M.H.; Maier, S.A. Subgroup decomposition of plasmonic resonances in hybrid oligomers: Modeling the resonance lineshape. Nano Lett. 2012, 12, 2101–2106.
[15]  Yang, Z.J.; Zhang, Z.S.; Zhang, L.H.; Li, Q.Q.; Hao, Z.H.; Wang, Q.Q. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt. Lett. 2011, 36, 1542–1544.
[16]  Shao, L.; Fang, C.; Chen, H.; Man, Y.C.; Wang, J.; Lin, H.Q. Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres. Nano Lett. 2012, 12, 1424–1430.
[17]  Woo, K.C.; Shao, L.; Chen, H.; Liang, Y.; Wang, J.; Lin, H.Q. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods. ACS Nano 2011, 5, 5976–5986.
[18]  Liu, N.; Hentschel, M.; Weiss, T.; Alivisatos, A.P.; Giessen, H. Three-dimensional plasmon rulers. Science 2011, 332, 1407–1410.
[19]  Davis, T.J.; Hentschel, M.; Liu, N.; Giessen, H. Analytical model of the three-dimensional plasmonic ruler. ACS Nano 2012, 6, 1291–1298.
[20]  Liu, S.D.; Zhang, Z.S.; Wang, Q.Q. High sensitivity and large field enhancement of symmetry broken Au nanorings: Effect of multipolar plasmon resonance and propagation. Opt. Express 2009, 17, 2906–2917.
[21]  Hao, F.; Nordlander, P.; Burnett, M.T.; Maier, S.A. Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Phys. Rev. B 2007, 76, 245417.
[22]  Niu, L.; Zhang, J.B.; Fu, Y.H.; Kulkarni, S.; Luk'yanchuk, B. Fano resonance in dual-disk ring plasmonic nanostructures. Opt. Express 2011, 19, 22974–22981.
[23]  Fu, Y.H.; Zhang, J.B.; Yu, Y.F.; Luk'yanchuk, B. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 2012, 6, 5130–5137.
[24]  Zhang, Y.; Jia, T.Q.; Zhang, H.M.; Xu, Z.Z. Fano resonances in disk-ring plasmonic nanostructure: Strong interaction between bright dipolar and dark multipolar mode. Opt. Lett. 2012, 37, 4919–4921.
[25]  Kanté, B.; Park, Y.S.; O'Brien, K.; Shuldman, D.; Lanzillotti-Kimura, N.D.; Wong, Z.J.; Yin, X.B.; Zhang, X. Symmetry breaking and optical negative index of closed nanorings. Nat. Commun. 2012, 3, doi:10.1038/ncomms2161.
[26]  Cao, W.; Singh, R.; Al-Naib, I.A.; He, M.X.; Taylor, A.J.; Zhang, W.L. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt. Lett. 2012, 37, 3366–3368.
[27]  Wang, J.Q.; Fan, C.Z.; He, J.N.; Ding, P.; Liang, E.J.; Xue, Q.Z. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt. Express 2013, 21, 2236–2244.
[28]  Lynch, D.W.; Hunter, W.R. Silver (Ag). In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic: Orlando, FL, USA, 1985.
[29]  Lassiter, J.B.; Obhani, S.H.; Fan, J.A.; Kundu, J.; Capasso, F.; Nordlander, P.; Halas, N.J. Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability. Nano Lett. 2010, 10, 3184–3189.
[30]  Fang, Z.Y.; Liu, Z.; Wang, Y.M.; Ajayan, P.M.; Nordlander, P.; Halas, N.J. Graphene-antenna sandwich photodetector. Nano Lett. 2012, 12, 3808–3813.
[31]  Stockman, M. I. Dark-hot resonances. Nature 2010, 467, 541–542.
[32]  Ye, J.; Wen, F.; Sobhani, H.; Lassiter, J.B.; Dorpe, P.V.; Nordlander, P.; Halas, N.J. Plasmonic nanoclusters: Near field properties of the Fano resonance interrogated with SERS. Nano Lett. 2012, 12, 1660–1667.
[33]  Tam, F.; Moran, C.; Halas, N. Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J. Phys. Chem. B 2004, 108, 17290–17294.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133