The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.
References
[1]
Arora, A.; Dutta, P.; Bapat, S.; Kulathumani, V.; Zhang, H.; Naik, V.; Mittal, V.; Cao, H.; Demirbas, M.; Gouda, M.; et al. A line in the sand: A wireless sensor network for target detection, classification, and tracking. Comput. Netw. 2004, 46, 605–634.
[2]
Cheng, L.; Wu, C.; Zhang, Y.; Wu, H.; Li, M.; Maple, C. A survey of localization in wireless sensor network. Int. J. Distrib. Sens. Netw. 2012, 2012, 962523:1–962523:12.
[3]
Sheng, X.H.; Hu, Y.H. Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Trans. Signal Process. 2005, 53, 44–53.
[4]
Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94.
[5]
George, A.D.; Kim, K. Parallel algorithms for split-aperture conventional beamforming. J. Comput. Acoust. 1999, 7, 225–244.
[6]
Wang, Q.X.; Chen, W.P.; Zheng, R.; Lee, K.; Sha, L. Acoustic Target Tracking Using Tiny Wireless Sensor Devices. In Lecture Notes Computer Science; Zhao, F., Guibas, L., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2003; Volume 2634, pp. 642–657.
[7]
Chen, W.P.; Hou, J.C.; Sha, L. Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Trans. Mob. Comput. 2004, 3, 258–271.
[8]
Merhi, Z.M.; Elgamel, M.A.; Bayoumi, M.A. A lightweight collaborative fault tolerant target localization system for wireless sensor networks. IEEE Trans. Mob. Comput. 2009, 8, 1690–1704.
[9]
Kuang, X.H.; Feng, R.; Shao, H.H. A lightweight target-tracking scheme using wireless sensor network. Meas. Sci. Technol. 2008, 19, doi:10.1088/0957-0233/19/2/025104.
[10]
Zhang, J.S.; Walpola, M.; Roelant, D.; Zhu, H.; Yen, K. Self-organization of unattended wireless acoustic sensor networks for ground target tracking. Pervasive Mob. Comput. 2009, 5, 148–164.
[11]
Wang, X.; Ding, L.; Wang, S. Trust evaluation sensing for wireless sensor networks. IEEE Trans. Instrum. Meas. 2011, 60, 2088–2095.
[12]
Wang, X.; Bi, D.W.; Ding, L.; Wang, S. Agent collaborative target localization and classification in wireless sensor networks. Sensors 2007, 7, 1359–1386.
[13]
Yang, Q.; Lim, A.; Casey, K.; Neelisetti, R.K. An enhanced CPA algorithm for real-time target tracking in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2009, 5, 619–643.
[14]
Wang, X.; Ma, J.J.; Ding, L.; Bi, D.W. Robust forecasting for energy efficiency of wireless multimedia sensor networks. Sensors 2007, 7, 2779–2807.
[15]
Meng, W.; Xiao, W.D.; Xie, L.H. An efficient EM algorithm for energy-based multisource localization in wireless sensor networks. IEEE Trans. Instrum. Meas. 2011, 60, 1017–1027.
Zhao, T.; Nehorai, A. Information-driven distributed maximum likelihood estimation based on Gauss-Newton method in wireless sensor networks. IEEE Trans. Signal Process. 2007, 55, 4669–4682.
[18]
Wang, Z.; Luo, J.A.; Zhang, X.P. A novel location-penalized maximum likelihood estimator for bearing-only target localization. IEEE Trans. Signal Process. 2012, 60, 6166–6181.
[19]
Kim, Y.H.; Ortega, A. Quantizer design for energy-based source localization in sensor networks. IEEE Trans. Signal Process. 2011, 59, 5577–5588.
[20]
Duarte, M.F.; Hu, Y.H. Vehicle classification in distributed sensor networks. J. Parallel Distrib. Comput. 2004, 64, 826–838.
[21]
Sorosiak, E.J.; Li, M.F.; Lim, T.C.; Duan, J.; Abe, T.; Lee, M.R.; Cheng, M.T.; Vanhaaften, W. A fast numerical formulation for simulating vehicle compartment acoustics. Noise Control Eng. J. 2009, 57, 291–300.
[22]
Van der Walt, D.C. Measurement technique to assess the acoustic properties of a silencer component for transient engine conditions. J. Sound Vib. 2001, 243, 797–821.
[23]
Larsson, K.; Barrelet, S.; Kropp, W. The modelling of the dynamic behaviour of tyre tread blocks. Appl. Acoust. 2002, 63, 659–677.
[24]
Paje, S.E.; Bueno, M.; Teran, F.; Vinuela, U. Monitoring road surfaces by close proximity noise of the tire/road interaction. J. Acoust. Soc. Am. 2007, 122, 2636–2641.
[25]
Sandberg, U. Tyre/Road Noise—Myths and Realities. Proceedings of the International Congress and Exhibition on Noise Control Engineering, Hague, The Netherlands, 27–30 August 2001.
[26]
Mato-Méndez, F.J.; Sobreira-Seoane, M.A. Blind separation to improve classification of traffic noise. Appl. Acoust. 2011, 72, 590–598.
[27]
Quinn, B.G. Doppler speed and range estimation using frequency and amplitude estimates. J. Acoust. Soc. Am. 1995, 98, 2560–2566.
[28]
Couvreur, C.; Bresler, Y. Doppler-Based Motion Estimation for Wide-Band Sources from Single Passive Sensor Measurements. Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1997 (ICASSP-97), Munich, Germany, 21–24 April 1997; Volume 5, pp. 3537–3540.
[29]
Cevher, V.; Chellappa, R.; McClellan, J.H. Vehicle speed estimation using acoustic wave patterns. IEEE Trans. Signal Process. 2009, 57, 30–47.
[30]
Kim, K.; Choi, A. Binaural sound localizer for azimuthal movement detection based on diffraction. Sensors 2012, 12, 10584–10603.
[31]
Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications: New York, NY, USA, 1972.
[32]
Kim, K. Design and analysis of experimental anechoic chamber for localization. J. Acoust. Soc. Korea 2012, 31, 225–234.
[33]
Raghunathan, V.; Schurgers, C.; Park, S.; Srivastava, M.B. Energy-aware wireless microsensor networks. IEEE Signal Procss. Mag. 2002, 19, 40–50.
[34]
Hill, J.L.; Culler, D.E. MICA: A wireless platform for deeply embedded networks. IEEE Micro. 2002, 22, 12–24.