The utilization of high accuracy sensors in harsh environments has been limited by the temperature constraints of the control electronics that must be co-located with the sensor. Several methods of remote interrogation for resonant sensors are presented in this paper which would allow these sensors to be extended to harsh environments. This work in particular demonstrates for the first time the ability to acoustically drive a silicon comb drive resonator into resonance and electromagnetically couple to the resonator to read its frequency. The performance of this system was studied as a function of standoff distance demonstrating the ability to excite and read the device from 22 cm when limited to drive powers of 30 mW. A feedback architecture was implemented that allowed the resonator to be driven into resonance from broadband noise and a standoff distance of 15 cm was demonstrated. It is emphasized that no junction-based electronic device was required to be co-located with the resonator, opening the door for the use of silicon-based, high accuracy MEMS devices in high temperature wireless applications.
References
[1]
Gould, D.; Sklorz, A.; Meiners, M.; Lang, W.; Benecke, W. Passive Wireless Temperature Sensing Using RF Technology for an Automotive Application. Proceedings of Sixth IASTED Conference on Wireless and Optical Communications, Banff, AB, Canada, 3–5 July 2006.
[2]
Karthaus, U.; Fischer, M. Fully integrated passive UHF RFID transponder IC with 16.7 um minimum RF input power. IEEE J. Solid-State Circuits 2003, 38, 1602–1608.
[3]
DeHennis, A.; Wise, K. A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity. J. Microelectromech. Syst. 2005, 14, 12–22.
[4]
Suster, M.; Ko, W.; Young, D. An optically powered wireless telemetry module for high temperature MEMS sensing and communication. J. Microelectromech. Syst. 2003, 13, 536–541.
[5]
Takeuchi, S.; Shimoyama, I. Selective drive of electrostatic actuators using remote inductive powering. Sens. Actuators A 2002, 95, 269–273.
[6]
Schimetta, G.; Dollinger, F.; Scholl, G.; Weigel, R. Wireless Pressure and Temperature Measurement using a SAW Hybrid Sensor. Proceedings of 2000 IEEE Ultrasonics Symposium, San Juan, PR, USA, 22–25 October 2000; pp. 445–448.
[7]
Kalinin, V. Passive Wireless Strain and Temperature Sensors Based on SAW Technology. Proceedings of 2004 IEEE Radio and Wireless Conference, Atlanta, GA, USA, 19–22 September 2004; pp. 187–190.
[8]
Yen, T.-T.; Lin, C.M.; Zhao, X.; Senesky, D.G.; Hopcroft, M.A.; Pisano, A.P. Characterization of Aluminum Nitride Lamb Wave Resonators Operating at 600 °C For Harsh Environment RF Applications. Proceedings of the IEEE International Conference on Microelectromechanical Systems, Wanchai, Hong Kong, 24–28 January 2010; pp. 731–734.
[9]
Takahata, K.; Gianchandani, Y. A micromachined capacitive pressure sensor using a cavity-less structure with bulk metal/elastomer layers and its wireless telemetry applications. Sensors 2008, 8, 2317–2330.
[10]
Akar, O.; Tay, A.; Najafi, K. A wireless batch sealed absolute capacitive pressure sensor. Sens. Actuators A 2000, 95, 29–38.
[11]
Fonseca, M.; English, J.; von Arx, M.; Allen, M. Wireless micromachined ceramic pressure sensor for high temperature applications. J. Microelectromech. Syst. 2002, 11, 337–343.
[12]
Radosavljevic, G.; Zivanov, L.; Smetana, W.; Maric, A.; Unger, M.; Nad, L. A wireless embedded resonant pressure sensor fabricated in the standard LTCC technology. IEEE Sens. 2009, 9, 1956–1962.
[13]
Welham, C.; Gardner, J.; Greenwood, J. A laterally driven micromachined resonant pressure sensor. Sens. Actuators A 1996, 52, 86–91.
[14]
Welham, C.; Greenwood, J.; Bertioli, M. A high accuracy resonant pressure sensor by fusion bonding and trench etching. Sens. Actuators A 1999, 76, 298–304.
[15]
Greenwood, J.; Wray, T. High accuracy pressure measurement with a silicon resonant sensor. Sens. Actuators A 1993, 37–38, 82–85.
[16]
Greenwood, J.; Satchell, D. Miniature silicon resonant pressure sensor. IEE Proc. D Control Theory Appl. 1988, 135, 369–372.
[17]
Bartels, O. The Passive Tyre-Pressure Transponder: Specifics of the Implementation. Available online: http://www.iqmobil.de (accessed on 20 September 2010).
[18]
Bartels, O. Apparatus for Wire-Free Transmission from Moving Parts. U.S. Patent 6,378,360 30 April 2002.
[19]
Challener, W.; Knobloch, A.; Ajgoankar, M.; Chamarthy, P.; Xia, H. Subsystem Design and Validation for Optical Sensors for Monitoring Enhanced Geothermal Systems. Proceedings of Thirty-Sixth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, 31 January–2 February 2011.
[20]
Palit, S.; Challener, W.; Lopez, J.; Mandal, S.; Xia, H. A Multi-Modality Fiber Optic Sensing Cable for Monitoring Enhanced Geothermal Systems. Proceedings of Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 30 January–1 February 2012.
[21]
Challener, W.; Palit, S.; Craddock, R.; Knobloch, A. MOEMS Pressure Sensors for Geothermal Well Monitoring. Proceedings of SPIE Photonics West, San Francisco, CA, USA, 2–7 February 2013.
[22]
Vernooy, D.; Knobloch, A.; Ahmad, F.; Sexton, D. Remote Excitation and Readout of a High Q Silicon Resonator. Proceedings of 2010 IEEE Sensors, Kona, HI, USA, 1–4 November 2010; pp. 1108–1112.
[23]
Greenwood, J. Sensor. U.S. Patent 6,584,864 1 July 2003.
[24]
Koskenvuori, M.; Tittonen, I. Towards micromechanical radio: Overtone excitations of a microresonator through non-linearities of the second and third order. J. Microelectromech. Syst. 2008, 17, 363–369.
[25]
Krauss, H.; Bostian, C.; Raab, F. Solid State Radio Engineering; John Wiley & Sons: New York, NY, USA, 1980; pp. 310–312.
[26]
Nguyen, C.; Howe, R. An integrated CMOS micromechanical resonator high Q oscillator. IEEE J. Solid-State Circuits 1999, 38, 440–454.