全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Multi Sensor Fusion Framework for Indoor-Outdoor Localization of Limited Resource Mobile Robots

DOI: 10.3390/s131014133

Keywords: mobile robots, pose estimation, sensor fusion, Kalman filtering, inertial sensors, robot sensing systems, dynamic model, embedded systems, global positioning systems, event based systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments.

References

[1]  Siegwart, R.; Nourbakhsh, I. Introduction to Autonomous Mobile Robots; The MIT Press: Cambridge, MA, USA, 2004.
[2]  Michel, O.; Rohrer, F.; Heiniger, N. Cyberbotics' Robot Curriculum. Available Online: http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum (accessed on 18 October 2013).
[3]  Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using Matlab, 3rd ed. ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001.
[4]  Welch, G.; Bishop, G. An Introduction to the Kalman Filter. Available online: http://www.cs.un-c.edu/welch/kalman/kalmanIntro.html (accessed on 18 October 2013).
[5]  Julier, S.; Uhlmann, J.; Durrant-Whyte, H.F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 2000, 45, 477–482.
[6]  Simon, D. John Wiley & Sons: Hoboken, NJ, USA, 2006.
[7]  Martinelli, A.; Siegwart, R. Estimating the Odometry Error of a Mobile Robot During Navigation. Proceedings of European Conference on Mobile Robots (ECMR 2003), Warsaw, Poland, 4–6 September, 2003.
[8]  Cong, T.H.; Kim, Y.J.; Lim, M.T. Hybrid Extended Kalman Filter-Based Localization with a Highly Accurate Odometry Model of a Mobile Robot. Proceedings of International Conference on Control, Automation and Systems (ICCAS 2008), Seoul, Korea, 14–17 October 2008; pp. 738–743.
[9]  Pioneer Robots Online Information. Available online: http://www.mobilerobots.com/ResearchRobots.aspx (accessed on 18 October 2013).
[10]  Chung, H.; Ojeda, L.; Borenstein, J. Accurate mobile robot dead reckoning with a precision-calibrated fiber-optic gyroscope. IEEE Trans. Robot. Autom. 2001, 17, 80–84.
[11]  Yi, J.; Wang, H.; Zhang, J.; Song, D.; Jayasuriya, S.; Liu, J. Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation. IEEE Trans. Robot. 2009, 25, 1087–1097.
[12]  Houshangi, N.; Azizi, F. Accurate Mobile Robot Position Determination Using Unscented Kalman Filter. Proceedings of Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; pp. 846–851.
[13]  Hyun, D.; Yang, H.S.; Park, H.S.; Kim, H.J. Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping. Mechatronics 2010, 20, 213–223.
[14]  Losada, C.; Mazo, M.; Palazuelos, S.; Pizarro, D.; Marrón, M. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots. Sensors 2010, 10, 3261–3279.
[15]  Fuchs, C.; Aschenbruck, N.; Martini, P.; Wieneke, M. Indoor tracking for mission critical scenarios: A survey. Pervasive Mob. Comput. 2011, 7, 1–15.
[16]  Skog, I.; Handel, P. In-car positioning and navigation technologies: A survey. IEEE Trans. Intell. Transp. Syst. 2009, 10, 4–21.
[17]  Kim, J.; Kim, Y.; Kim, S. An accurate localization for mobile robot using extended Kalman filter and sensor fusion. Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN 2008), Hong Kong, 1–8 June 2008; pp. 2928–2933.
[18]  Kim, S.; Byung Kook, K. Dynamic ultrasonic hybrid localization system for indoor mobile robots. IEEE Trans. Ind. Electron. 2012, 60, 4562–4573.
[19]  Valera, A.; Weiss, M.; Vallés, M.; Diez, J.L. Bluetooth-Networked Trajectory Control of Autonomous Vehicles. Proceedings of 8th IFAC Symposium on Cost Oriented Automation, La Habana, Cuba, 13–15 February 2007; pp. 198–203.
[20]  Valera, A.; Vallés, M.; Marín, L.; Albertos, P. Design and Implementation of Kalman Filters Applied to Lego NXT Based Robots. Proceedings of the 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011; pp. 9830–9835.
[21]  Boccadoro, M.; Martinelli, F.; Pagnottelli, S. Constrained and quantized Kalman filtering for an RFID robot localization problem. Auton. Robot. 2010, 29, 235–251.
[22]  Reina, G.; Vargas, A.; Nagatani, K.; Yoshida, K. Adaptive Kalman Filtering for GPS-based Mobile Robot Localization. Proceedings of IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR 2007), Rome, Italy, 27– 29 September 2007; pp. 1–6.
[23]  Madhavan, R.; Fregene, K.; Parker, L.E. Distributed cooperative outdoor multirobot localization and mapping. Auton. Robot. 2004, 17, 23–39.
[24]  Yang, Y.; Farrell, J. Magnetometer and differential carrier phase GPS-aided INS for advanced vehicle control. IEEE Trans. Robot. Autom. 2003, 19, 269–282.
[25]  Zhang, T.; Xu, X. A new method of seamless land navigation for GPS/INS integrated system. Measurement 2012, 45, 691–701.
[26]  Shen, Z.; Georgy, J.; Korenberg, M.J.; Noureldin, A. Low cost two dimension navigation using an augmented Kalman filter fast orthogonal search module for the integration of reduced inertial sensor system and Global Positioning System. Trans. Res. Part C: Emerg. Technol. 2011, 19, 1111–1132.
[27]  Kotecha, J.H.; Djuric, P.M. Gaussian particle filtering. IEEE Trans. Signal Process. 2003, 51, 2592–2601.
[28]  Demir, O.; Lunze, J. Cooperative control of multi-agent systems with event-based communication. Proceedings of 2012 American Control Conference, Montreal, QC, USA, 27–29 June 2012; pp. 4504–4509.
[29]  Seyboth, G.S.; Dimarogonas, D.V.; Johansson, K.H. Event-based broadcasting for multi-agent average consensus. Automatica 2013, 49, 245–252.
[30]  Guinaldo, M.; Fábregas, E.; Farias, G.; Dormido-Canto, S.; Chaos, D.; Sánchez, J.; Dormido, S. A mobile robots experimental environment with event-based wireless communication. Sensors 2013, 13, 9396–9413.
[31]  Meng, X.; Chen, T. Event based agreement protocols for multi-agent networks. Automatica 2013, 49, 2125–2132.
[32]  Campion, G.; Bastin, G.; Dandrea-Novel, B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 1996, 12, 47–62.
[33]  Rajamani, R. Vehicle Dynamics And Control, 2nd ed.. Mechanical Engineering Series ed.; Springer: Berlin, Germany, 2012.
[34]  Ward, C.C.; Iagnemma, K. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain. IEEE Trans. Robot. 2008, 24, 821–831.
[35]  Zohar, I.; Ailon, A.; Rabinovici, R. Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: Trajectory tracking and related application. Robot. Auton. Syst. 2011, 59, 343–353.
[36]  Cruz, C.D.L.; Carelli, R. Dynamic model based formation control and obstacle avoidance of multi-robot systems. Robotica 2008, 26, 345–356.
[37]  Attia, H.A. Dynamic model of multi-rigid-body systems based on particle dynamics with recursive approach. J. Appl. Math. 2005, 2005, 365–382.
[38]  Wong, J. Theory of Ground Vehicles; John Wiley & Sons: Hoboken, NJ, USA, 2008.
[39]  Arras, K.O. . EPFL-ASL-TR-98-01 R3; Swiss Federal Institute of Technology Lausann: Lausanne, Switzerland, 1998.
[40]  LEGO NXT Mindsensors. Available online: http://www.mindsensors.com (accessed on 18 October 2013).
[41]  LEGO NXT HiTechnic Sensors. Available online: http://www.hitechnic.com/sensors (accessed on 18 October 2013).
[42]  LEGO 9V Technic Motors Compared Characteristics. Available online: http://wwwphilohome.com/motors/motorcomp.htm (accessed on 18 October 2013).
[43]  IG-500N: GPS Aided Miniature INS. Available online: http://www.sbg-systems.com/products/ig500n-miniature-ins-gps (accessed on 18 October 2013).
[44]  IGEPv2 Board. Available online: http://www.isee.biz/products/igep-processor-boards/igepv2-dm3730 (accessed on 18 October 2013).
[45]  Hartikainen, J.; S?rkk?, S. EKF/UKF Toolbox for Matlab V1.3. Available online: http://www.lce.hut.fi/research/mm/ekfukf/ (accessed on 18 October 2013).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133