Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU), which are wearable and comfortable devices with long battery life. The IMU’s movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A μSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson’s disease symptoms, in gait analysis, and in a fall detection system.
References
[1]
Culhane, K.M.; O'Connor, M.; Lyons, D.; Lyons, G.M. Accelerometers in rehabilitation medicine for older adults. Age Ageing 2005, 34, 556–560.
[2]
Ermes, M.; Parkka, J.; Mantyjarvi, J.; Korhonen, I. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26.
[3]
Zijlstra, W.; Aminian, K. Mobility assessment in older people: New possibilities and challenges. Eur. J. Ageing 2007, 4, 3–12.
[4]
Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring. Comput. Hum. Behav. 1999, 15, 571–583.
[5]
Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Bula, C.J.; Robert, P. Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 2003, 50, 711–723.
[6]
Godfrey, A.; Conway, R.; Meagher, D.; OLaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys. 2008, 30, 1364–1386.
[7]
Hung, T.N.; Suh, Y.S. Inertial sensor-based two feet motion tracking for gait analysis. Sensors 2013, 13, 5614–5629.
[8]
De Bruin, E.D.; Hubli, M.; Hofer, P.; Wolf, P.; Murer, K.; Zijlstra, W. Validity and reliability of accelerometer-based gait assessment in patients with diabetes on challenging surfaces. J. Aging Res. 2012, 2012, doi:10.1155/2012/954378.
[9]
Lin, Z.; Zecca, M.; Sessa, S.; Ishii, H.; Takanishi, A. Development of an ultra-miniaturized inertial measurement unit for jaw movement analysis during free chewing. J. Comput. Sci. 2010, 6, 896–903.
[10]
Mathie, M.J.; Coster, A.C.F.; Lovell, N.H.; Celler, B.G. Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 2004, 25, 1–20.
[11]
Zheng, H.; Black, N.D.; Harris, N.D. Position-sensing technologies for movement analysis in stroke rehabilitation. Med. Biol. Eng. Comput. 2005, 43, 413–420.
[12]
Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D.; Meijer, K.; Crompton, R. Activity identification using body-mounted sensors—A review of classification techniques. Physiol. Meas. 2009, 30, doi:10.1088/0967-3334/30/4/R01.
[13]
Mannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 2010, 10, 1154–1175.
[14]
Yang, C.C.; Hsu, Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772–7788.
[15]
Gjoreski, H.; Lustrek, M.; Gams, M. Accelerometer Placement for Posture Recognition and Fall Detection. Proceedings of 7th International Conference on Intelligent Environments, Nottingham, UK, 25–28 July 2011; pp. 47–54.
[16]
Taraldsen, K.; Chastin, S.F.M.; Riphagen, I.I.; Vereijken, B.; Helbostad, J.L. Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: A systematic literature review of current knowledge and applications. Maturitas 2012, 71, 13–19.
[17]
Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188.
[18]
James, D.A.; Davey, N.; Rice, T. An Accelerometer Based Sensor Platform for Insitu Elite Athlete Performance Analysis. Proceedings of IEEE Sensors, Vienna, Austria, 24–27 October 2004; pp. 1373–1376.
[19]
Zwartjes, D.; Heida, T.; van Vugt, J.; Geelen, J.; Veltink, P. Ambulatory monitoring of activities and motor symptoms in Parkinson's disease. IEEE Trans. Biomed. Eng. 2010, 57, 2778–2786.
[20]
Salarian, A.; Russmann, H.; Wider, C.; Burkhard, P.R.; Vingerhoets, F.J.G.; Aminian, K. Quantification of tremor and bradykinesia in Parkinson's disease using a novel ambulatory monitoring system. IEEE Trans. Biomed. Eng. 2007, 54, 313–322.
[21]
Samà, A.; Perez-Lopez, C.; Romagosa, J.; Rodriguez-Martin, D.; Català, A.; Cabestany, J.; Perez-Martínez, D.A.; Rodríguez-Molinero, A. Dyskinesia and Motor State Detection in Parkinson's Disease Patients with a Single Movement Sensor. Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 1194–1197.
[22]
Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.; Bonato, P.; et al. Monitoring motor fluctuations in patients with Parkinson's disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 864–873.
[23]
Kostek, B.; Kaszuba, K.; Zwan, P.; Robowski, P.; Slawek, J. Automatic assessment of the motor state of the Parkinson's disease patient—A case study. Diagn. Pathol. 2012, 7, doi:10.1186/1746-1596-7-18.
[24]
Becq, G.; Bonnet, S.; Minotti, L.; Antonakios, M.; Guillemaud, R.; Kahane, P. Classification of epileptic motor manifestations using inertial and magnetic sensors. Comput. Biol. Med. 2011, 41, 46–55.
[25]
Fulk, G.D.; Sazonov, E. Using sensors to measure activity in people with stroke. Top. Stroke Rehabil. 2012, 18, 746–757.
[26]
Jovanov, E.; Wang, E.; Verhagen, L.; Fredrickson, M.; Fratangelo, R. deFOG—A Real Time System for Detection and Unfreezing of Gait of Parkinson's Patients. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2–6 September 2009; pp. 5151–5154.
[27]
Home-Based Empowered Living for Parkinson's Disease Patients. Available online: http://www.aal-europe.eu/projects/help/ (accessed on 15 October 2013).
[28]
Ahlrichs, C.; Sama, A.; Rovira, J.; Herrlich, S.; Rodriguez-Molinero, A. HELP : Optimizing Treatment of Parkinson's Disease Patients. Proceedings of 3rd International Conference on the Elderly and New Technologies, Castellón, Spain, 18–20 April 2012; pp. 1–10.
[29]
Lee, S.W.; Sweeney, T.; Clausen, D.; Kolbach, C.; Hassen, A.; Firek, A.; Brinegar, C.; Petrofsky, J. Combined insulin pump therapy with real-time continuous glucose monitoring significantly improves glycemic control compared to multiple daily injection therapy in pump na?ve patients with type 1 diabetes; single center pilot study experience. J. Diabetes Sci. Technol. 2007, 1, 400–404.
[30]
Renard, E. Closed-loop insulin delivery: Is the Holy Grail near? Lancet 2010, 375, 702–703.
[31]
Veltink, P.H.; Slycke, P.; Hemssems, J.; Buschman, R.; Bultstra, G.; Hermens, H. Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator. Med. Eng. Phys. 2003, 25, 21–28.
[32]
European Projects Awards: Winners 2013. Available online: http://www.europeanprojects.org/awards/winners2013 (accessed on 15 October 2013).
[33]
MoMoPa—Monitoring the Mobility of Parkinson's Patients for Therapeutic Purposes. Available online: http://www.fundacioabat.cat/index.php/momopa (accessed on 15 October 2013).
[34]
REMPARK—Personal Health Device for the Remote and Autonomous Management of Parkinson's Disease. Available online: http://rempark.eu/ (accessed on 15 October 2013).
[35]
Cabestany, J.; Moreno, J.M.; Perez, C.; Sama, A.; Catala, A. REMPARK: When AI and Technology Meet Parkinson Disease Assessment. Proceedings of the 20th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), Gdynia, Poland, 20–22 June 2013; pp. 562–567.
[36]
Cabestany, J.; Moreno, J.M.; Perez, C.; Sama, A.; Catala, A. FATE: One Step Towards an Automatic Aging People Fall Detection Service. Proceedings of the 20th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), Gdynia, Poland, 20–22 June 2013; pp. 545–552.
[37]
Zhou, S.; Shan, Q.; Fei, F.; Li, W.J.; Wu, P.C.K.; Meng, B.; Chan, C.K.H.; Liou, J.Y.J. Gesture Recognition for Interactive Controllers Using MEMS Motion Sensors. Proceedings of 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5–8 January 2009; pp. 935–940.
[38]
Britt, W.R.; Miller, J.; Waggoner, P.; Bevly, D.M.; Hamilton, J.A., Jr. An embedded system for real-time navigation and remote command of a trained canine. Pers. Ubiquit. Comput. 2011, 15, 61–74.
[39]
Rantakokko, J.; Emilsson, E.; Stromback, P.; Rydell, J. Scenario-Based Evaluations of High-Accuracy Personal Positioning Systems. Proceedings of 2012 IEEE /ION Position Location and Navigation Symposium (PLANS), Myrtle Beach, CS, USA, 23–26 April 2012; pp. 106–112.
[40]
Xsens: All Products Overview. Available online: http://www.xsens.com/en/general/products-all (accessed on 15 October 2013).
[41]
Shimmer Discovery in Motion: All Products. Available online: http://www.shimmersensing.com/shop/all-products/ (accessed on 15 October 2013).
[42]
O'Donovan, K.J.; Greene, B.R.; McGrath, D.; O'Neill, R.; Burns, A.; Caulfield, B. SHIMMER: A New Tool for Temporal Gait Analysis. Pproceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2–6 September 2009; pp. 3826–3829.
[43]
Electronic Goniometer Joint Mobility Check-Up. Available online: http://www.technoconcept.fr/IMG/pdf/Datasheet_KineO_Rev01_EN.pdf (accessed on 15 October 2013).
[44]
Mariani, B.; Jim, C. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson ' s disease. IEEE Trans. Biomed. Eng. 2013, 60, 155–158.
[45]
Laboratory of Movement Analysis and Measurement. Available online: http://lmam.epfl.ch/ (accessed on 15 October 2013).
[46]
White, D.K.; Wagenaar, R.C.; Ellis, T. Monitoring activity in individuals with Parkinson disease: A validity study. J. Neurol. Phys. Ther. 2006, 30, 12–21.
[47]
Rochester, L.; Nieuwboer, A.; Baker, K.; Hetherington, V.; Willems, A.-M.; Chavret, F.; Kwakkel, G.; van Wegen, E.; Lim, I.; Jones, D. The attentional cost of external rhythmical cues and their impact on gait in Parkinson's disease: Effect of cue modality and task complexity. J. Neural Transm. 2007, 114, 1243–1248.
[48]
Nieuwboer, A.; Baker, K.; Willems, A.-M.; Jones, D.; Spildooren, J.; Lim, I.; Kwakkel, G.; van Wegen, E.; Rochester, L. The short-term effects of different cueing modalities on turn speed in people with Parkinson's disease. Neurorehabilit. Neural Repair 2009, 23, 831–836.
[49]
Inertial Sensors 3DM-GX1. Available online: http://www.microstrain.com/inertial/3DM-GX1 (accessed on 15 October 2013).
[50]
UAV V3 Development Platform. Available online: https://www.sparkfun.com/products/9980 (accessed on 15 October 2013).
[51]
Zhang, K.; Werner, P.; Sun, M.; Pi-Sunyer, F.X.; Boozer, C.N. Measurement of human daily physical activity. Obes. Res. 2003, 11, 33–40.
[52]
Huddleston, J.; Alaiti, A.; Goldvasser, D.; Scarborough, D.; Freiberg, A.; Rubash, H.; Malchau, H.; Harris, W.; Krebs, D. Ambulatory measurement of knee motion and physical activity: Preliminary evaluation of a smart activity monitor. J. Neuroeng. Rehabilit. 2006, 3, doi:10.1186/1743-0003-3-21.
[53]
Van Hees, V.T.; Slootmaker, S.M.; de Groot, G.; van Mechelen, W.; van Lummel, R.C. Reproducibility of a triaxial seismic accelerometer (DynaPort). Med. Sci. Sports Exerc. 2009, 41, 810–817.
[54]
Godfrey, A.; Culhane, K.M.; Lyons, G.M. Comparison of the performance of the activPAL professional physical activity logger to a discrete accelerometer-based activity monitor. Med. Eng. Phys. 2007, 29, 930–934.
[55]
Rowlands, A.V.; Thomas, P.W.M.; Eston, R.G.; Topping, R. Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Med. Sci. Sports Exerc. 2004, 36, 518–524.
[56]
Technical Specifications RT3. Available online: http://www.stayhealthy.com/en_us/main/rt3tech (accessed on 15 October 2013).
[57]
LIS3LV02DL Linear Accelerometer 3-Axis ±2 g/±6 g with SPI/I2C digital interface. Available online: http://www.st.com/web/catalog/sense_power/FM89/SC444/PF127514 (accessed on 1 February 2011).
[58]
Mathie, M.J.; Basilakis, J.; Celler, B.G. A System for Monitoring Posture and Physical Activity Using Accelerometers. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; pp. 3654–3657.
[59]
Bouten, C.V.; Koekkoek, K.T.; Verduin, M.; Kodde, R.; Janssen, J.D. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 1997, 44, 136–147.
Najafi, B.; Aminian, K.; Loew, F.; Blanc, Y.; Robert, P.A. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans. Biomed. Eng. 2002, 49, 843–851.
[62]
Li, Q.; Stankovic, J.A.; Hanson, M.A.; Barth, A.T.; Lach, J.; Zhou, G. Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information. Proceedings of Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 138–143.
[63]
IDG-650 Dual-Axis Gyroscope Product Specification. Available Online: http://www.invensense.com/mems/gyro/documents/PS-IDG-0650B-00-05.pdf (accessed on 16 October 2013).
[64]
ISZ-650 Single-Axis Z-Gyro Product Specification. Available Online: http://invensense.com/jp/mems/gyro/documents/PS-ISZ-0650B-00-02.pdf (accessed on 16 October 2013).
[65]
Roetenberg, D.; Slycke, P.J.; Veltink, P.H. Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Trans. Biomed. Eng. 2007, 54, 883–890.
[66]
Liu, C.; Li, J.; Huang, K.; Fei, L. A Quatemion-Based Initial Orientation Estimation System Suitable for One Special Dynamic State Using Low Cost Magnetometer and Accelerometer. Proceedings of 2012 IEEE/ION Position Location and Navigation Symposium (PLANS), Myrtle Beach, CS, USA, 23–26 April 2012; pp. 613–619.
[67]
Bonnet, S.; Héliot, R.A. A magnetometer-based approach for studying human movements. IEEE Trans. Biomed. Eng. 2007, 54, 1353–1355.
[68]
Schepers, H.M.; Roetenberg, D.; Veltink, P.H. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation. Med. Biol. Eng. Comput. 2010, 48, 27–37.
[69]
2-Axis Magnetic Sensor Circuit HMC6042. Available online: http://www.sssj.co.jp/products/magnetic/pdf/HMC6042.pdf (accessed on 1 February 2011).
[70]
1-Axis Magnetic Sensor HMC1041Z. Available online: http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/HMC1041Z.pdf (accessed on 16 October 2013).
[71]
Giansanti, D.; Maccioni, G.; Macellari, V. Guidelines for Calibration and Drift Compensation of a Wearable Device with Rate-Gyroscopes and Accelerometers. Proceedings of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China, 1–4 September 2007; pp. 2342–2345.
[72]
Thurlby Thandar Instruments Inc. QL355T & QL355TP Precision Power SuppliesInstruction Manual (Book Part No. 48511-0560 Issue 3). 2 July 2003. Available online: http://www.tti-test.com/go/ql/ql-spec.htm (accessed on 16 October 2013).
[73]
Agilent Technologies Inc. Agilent 53131A/132A Operating guide (53131-90055). May 1999. Available online: http://www.home.agilent.com/upload/cmc_upload/All/53131-0055_010599.pdf?&cc=ES&lc=eng (accessed on 16 October 2013).
[74]
Microchip, Inc?. dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 Datasheet; (DS70291G). March 2008. Available online: http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en532303 (accessed on 16 October 2013).
[75]
Bluegiga Technologies Oy. WT12 Bluetooth Class 2 Module. Available online: http://www.bluegiga.com/en-US/products/bluetooth-classic-modules/wt12-bluetooth--class-2-module/ (accessed on 16 October 2013).
[76]
Samà, A.; Perez-Lopez, C.; Rodriguez-Martin, D.; Cabestany, J.; Moreno, J.M.; Rodriguez-Molinero, A. A Heterogeneous Database for Movement Knowledge Extraction in Parkinson's Disease. Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Puerto de la Cruz, Spain, 12–14 June 2013.
[77]
B?chlin, M.; Plotnik, M.; Roggen, D.; Giladi, N.; Hausdorff, J.M.; Tr?ster, G. A wearable system to assist walking of Parkinson s disease patients. Methods Inf. Med. 2010, 49, 88–95.
[78]
Yong, C.Y.; Sudirman, R.; Mahmood, N.H.; Chew, K.M.; Rahim, A.H.A.; Zainudin, M.N.H. Time-Frequency Domain and Spectrogram Distribution for Human Motion and Movement Behaviour Analysis. Proceedings of 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB), Macau, China, 28–30 May 2012; pp. 943–946.
[79]
SanDisk SD Card Product Family.. OEM Product Manual (version 2.2, 80-36-00497) June 2007. Available online: http://media.digikey.com/pdf/Data%20Sheets/M-Systems%20Inc%20PDFs/SD%20Card%20Prod%20Family%20OEM%20Manual.pdf (accessed on 7 January 2013).
[80]
Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 2013, 19, 1295–1314.
[81]
Rodriguez-Martin, D.; Samà, A.; Perez-Lopez, C.; Català, A.; Cabestany, J.; Rodriguez-Molinero, A. SVM-based posture identification with a single waist-located triaxial accelerometer. Expert Syst. Appl. 2013, 40, 7203–7211.
[82]
Duda, R.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed. ed.; Wiley: New York, NY, USA, 2001; pp. 1–10.
[83]
Samà, A.; Angulo, C.; Pardo, D.; Català, A.; Cabestany, J. Analyzing human gait and posture by combining feature selection and kernel methods. Neurocomputing 2011, 74, 2665–2674.
[84]
Samà, A.; Ruiz, F.J.; Agell, N.; Pérez-López, C.; Català, A.; Cabestany, J. Gait identification by means of box approximation geometry of reconstructed attractors in latent space. Neurocomputing 2013, 121, 79–88.
[85]
Rodríguez-Martín, D.; Samà, A.; Pérez-López, C.; Català, A.; Cabestany, J.; Rodríguez-Molinero, A. Identification of Postural Transitions Using a Waist-Located Inertial Sensor. In Advances on Computational Intelligence; Springer-Verlag: Berlin, Germany, 2013; pp. 142–149.
[86]
Rodríguez-Martín, D.; Samà, A.; Pérez-López, C.; Català, A. Identification of sit-to-stand and stand-to-sit transitions using a single inertial sensor. Stud. Health Technol. Inf. 2012, 177, 113–117.