Certain microbial Volatile Organic Compounds (VOCs) have been reported to enhance the growth and development of plants. The biocontrol fungi, Cladosporium cladosporioides CL-1 significantly improved the growth of tobacco seedlings in vitro when they were co-cultivated without physical contact. SPME Quadrupole GC/MS/MS revealed that CL-1 emited the volatiles α-pinene, (?)-trans-caryophyllene, tetrahydro-2,2,5,5-tetramethylfuran, dehydroaromadendrene, and (+)-sativene. Potential roles of these volatiles in plant growth and development are discussed. Even though there were several fungal VOCs reported in the past that could influence plant growth, their exact mechanisms of action are not fully known. Fungal VOC-mediated plant growth promotion requires in-depth study in order for this technology to be used in large scale for crops, especially those grown under greenhouse conditions.
References
[1]
Kloepper, J.W.; Schroth, M.N. Plant Growth Promoting Rhizobacteria on Radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Angers, France, 27 August–2 September 1978.
[2]
Timmusk, S.; Nicander, B.; Granhall, U.; Tillberg, E. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 1999, 31, 1847–1852.
[3]
Dubeikovsky, A.N.; Mordukhova, E.A.; Kochetkov, V.V.; Polikarpova, F.Y.; Boronin, A.M. Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol. Biochem. 1993, 25, 1277–1281.
[4]
Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Barbetti, M.J.; Li, H.; Woo, S.L.; Lorito, M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 2008, 72, 80–86.
[5]
Liu, A.; Hamel, C.; Hamilton, R.I.; Ma, B.L.; Smith, D.L. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 2000, 9, 331–336.
[6]
Loper, J.E.; Schroth, M.N. Influence of bacterial sources of indole-2-acetic acid on root elongation of sugar beet. Phytopathology 1986, 76, 386–389.
Ortiz-Castro, R.; Contreras-Cornejo, H.; Macias-Rodriguez, L.; Lopez-Bucio, J. The role of microbial signals in plant growth and development. Plant Signal. Behav. 2009, 4, 701–712.
Yamagiwa, Y.; Inagaki, Y.; Ichinose, Y.; Toyoda, K.; Hyakumachi, M.; Shiraishi, T. Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistnace. J. Gen. Plant Pathol. 2011, 77, 336–341.
[12]
Kloepper, J.W.; Zablotowicz, R.M.; Tipping, E.M.; Lifshitz, R. Plant Growth Promotion Mediated by Bacterial Rhizosphere Colonizers. In The Rhizosphere and Plant Growth; Keister, K.L., Cregan, P.B., Eds.; Kluwer Academic: Dordecht, The Netherlands, 1991; pp. 315–326.
[13]
Kloepper, J.W.; Rodriguez-Kabana, R.; Zehnder, G.W.; Murphy, J.; Sikora, E.; Fernandez, C. Plant root-bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Aust. Plant Pathol. 1999, 28, 27–33.
[14]
Rodriguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339.
[15]
Arkhipova, T.N.; Veselov, S.U.; Melantiev, A.I.; Marty, N.E.V.; Kudoyerova, G.R. Ability of bacterium Bacillus to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 2005, 272, 201–209.
[16]
Persello-Cartieaux, F.; David, P.; Sarrobert, C.; Thibaud, M.C.; Robagliay, C.; Nussaume, L. Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 2001, 212, 190–198.
[17]
Bowen, G.D.; Rovira, A.D. The rhizosphere and its management to improve plant growth. Adv. Agron. 1999, 66, 1–102.
[18]
Farag, M.A.; Ryu, C.M.; Sumner, L.W.; Pare, P.W. GC/MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 2006, 67, 2262–2268.
[19]
Reino, J.L.; Guerrero, R.F.; Hernández-Galán, R.; Collado, I.G. Secondary metabolites from species of the biocontrol agent Trichoderma. In Pytochem. Rev.; 2008; Volume 7, pp. 89–123.
[20]
Harborne, J.B. Introduction to Ecological Biochemistry, 4th ed. ed.; Academic Press: London, UK, 1993; p. p.318.
[21]
Abraham, D.; Braguini, W.L.; Kelmer-Bracht, A.M.; Ishii-Iwamoto, E.L. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 2000, 26, 611–624.
[22]
Fischer, N.H. Plant Terpenoids as Allelopathic Agents. In Ecological Chemistry and Biochemistry of Plant Terpenoids; Harbone, J.B., Tomes-Barberan, F.A., Eds.; Claredon Press: Oxford, UK, 1991; pp. 377–399.
[23]
Zou, C.; Li, Z.; Yu, D. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J. Microbiol. 2010, 48, 460–466.
[24]
Syhre, M.; Scotter, J.M.; Chambers, S.T. Investigation into the production of 2-Pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples. Med. Mycol. 2008, 46, 209–215.
[25]
Zhang, H.; Kim, M.S.; Krishnamachari, V.; Payton, P.; Sun, Y.; Grimson, M.; Farag, M.A.; Ryu, C.M.; Allen, R.; Melo, I.S.; et al. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 2007, 226, 839–851.
[26]
Aochi, Y.O.; Farmer, W.J. Impact of soil microstructure on the molecular transport dynamics of 1,2-dichloroethane. Geoderma 2005, 127, 137–153.
[27]
Lutz, M.P.; Wenger, S.; Maurhofer, M.; Defago, G.; Duffy, B. Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol. Ecol. 2004, 48, 447–455.
[28]
Wheatley, R.E. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leewenhoek 2002, 81, 357–364.
[29]
Bitas, V.; Kim, H.S.; Bennett, J.; Kang, S. Sniffing on microbes: Diverse roles of microbial volatile organic compounds in plant health. Mol. Plant Microbe Interact. 2013, 26, 835–843.