The present study aimed to evaluate acetylcholinesterase (AChE) inhibitory and antioxidant activities of Lamiaceae medicinal plants growing wild in Croatia. Using Ellman’s colorimetric assay all tested ethanolic extracts and their hydroxycinnamic acid constituents demonstrated in vitro AChE inhibitory properties in a dose dependent manner. The extracts of Mentha x piperita, M. longifolia, Salvia officinalis, Satureja montana, Teucrium arduini, T. chamaedrys, T. montanum, T. polium and Thymus vulgaris at 1 mg/mL showed strong inhibitory activity against AChE. The antioxidant potential of the investigated Lamiaceae species was assessed by DPPH ? scavenging activity and total antioxidant capacity assays, in comparison with hydroxycinnamic acids and trolox. The extracts differed greatly in their total hydroxycinnamic derivatives content, determined spectrophotometrically. Rosmarinic acid was found to be the predominant constituent in most of the investigated medicinal plants (by RP-HPLC) and had a substantial influence on their AChE inhibitory and antioxidant properties, with the exception of Teucrium species. These findings indicate that Lamiaceae species are a rich source of various natural AChE inhibitors and antioxidants that could be useful in the prevention and treatment of Alzheimer’s and other related diseases.
References
[1]
Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639, doi:10.1038/nature02621.
[2]
Zhao, Y.; Dou, J.; Wu, T.; Aisa, H.A. Investigating the antioxidant and acetylcholinesterase inhibition activities of Gossypium herbaceam. Molecules 2013, 18, 951–962, doi:10.3390/molecules18010951.
[3]
Martorana, A.; Esposito, Z.; Koch, G. Beyond the cholinergic hypothesis: Do current drugs work in Alzheimer’s disease? CNS Neurosci. Ther. 2010, 16, 235–245.
Carpinella, M.C.; Andrione, D.G.; Ruiz, G.; Palacios, S.M. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phytother. Res. 2010, 24, 259–263.
[6]
Lee, H.P.; Zhu, X.; Casadesus, G.; Castellani, R.J.; Nunomura, A.; Smith, M.A.; Lee, H.; Perry, G. Antioxidant approaches for the treatment of Alzheimer’s disease. Expert Rev. Neurother. 2010, 10, 1201–1208, doi:10.1586/ern.10.74.
[7]
Dastmalchi, K.; Dorman, H.J.D.; Viorela, H.; Hiltunen, R. Plants as potential source for drug development against Alzheimer’s disease. Int. J. Biomed. Pharmaceut. Sci. 2007, 1, 83–104.
[8]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300, doi:10.1016/j.phymed.2007.02.002.
[9]
Yoo, K.Y.; Park, S.Y. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 2012, 17, 3524–3538, doi:10.3390/molecules17033524.
[10]
Nikoli?, T.; Re?etnik, I. Plant uses in Croatia. Phytol. Balcan. 2007, 13, 229–238.
[11]
Bival ?tefan, M.; Vukovi? Rodríguez, J.; Bla?ekovi?, B.; Kindl, M.; Vladimir-Kne?evi?, S. Total hydroxycinnamic acids assay: Prevalidation and application on Lamiaceae species. Food Anal. Methods 2013, 6, 1–11, doi:10.1007/s12161-012-9386-6.
[12]
Thompson, J.D.; Chalchat, J.C.; Michet, A.; Linhart, Y.B.; Ehlers, B. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J. Chem. Ecol. 2003, 29, 859–880, doi:10.1023/A:1022927615442.
[13]
Wang, M.; Li, J.; Ho, G.S.; Peng, X.; Ho, C.T. Isolation and identification of antioxidative flavonoid glycosides from thyme (Thymus vulgaris L.). J. Food Lipids 1998, 5, 313–321, doi:10.1111/j.1745-4522.1998.tb00127.x.
[14]
Fernández, L.F.; Palomino, O.M.; Frutos, G. Effectiveness of Rosmarinus officinalis essential oil as antihypotensive agent in primary hypotensive patients and its influence on health-related quality of life. J. Ethnopharmacol. 2014, 151, 509–516, doi:10.1016/j.jep.2013.11.006.
[15]
Bai, N.; He, K.; Roller, M.; Lai, C.S.; Shao, X.; Pan, M.H.; Ho, C.T. Flavonoids and phenolic compounds from Rosmarinus officinalis. J. Agric. Food Chem. 2010, 58, 5363–5367, doi:10.1021/jf100332w.
[16]
McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633, doi:10.1002/ptr.1936.
[17]
Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Rosselli, S.; Bruno, M. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxicol. 2013, 55, 42–47, doi:10.1016/j.fct.2012.12.036.
[18]
Lu, Y.; Foo, L.Y. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 2000, 55, 263–267, doi:10.1016/S0031-9422(00)00309-5.
[19]
Arceusz, A.; Wesolowski, M. Quality consistency evaluation of Melissa officinalis L. commercial herbs by HPLC fingerprint and quantitation of selected phenolic acids. J. Pharm. Biomed. Anal. 2013, 83, 215–220, doi:10.1016/j.jpba.2013.05.020.
[20]
Teixeira, B.; Marques, A.; Ramos, C.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.; Saraiva, J.A.; Nunes, M.L. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 2013, 93, 2707–2714, doi:10.1002/jsfa.6089.
[21]
Juri?i? Grube?i?, R.; Kremer, D.; Vladimir-Kne?evi?, S.; Vukovi? Rodríguez, J. Analysis of polyphenols, phytosterols, and bitter principles in Teucrium L. species. Central Europ. J. Biol. 2012, 7, 542–550, doi:10.2478/s11535-012-0040-5.
[22]
Ba?er, K.H.C.; Demir?akmak, B.; Duman, H. Composition of the essential oils of three Teucrium species from Turkey. J. Essent. Oil Res. 1997, 9, 545–549, doi:10.1080/10412905.1997.9700774.
[23]
Harborne, J.B.; Williams, C.A. Phytochemistry of the genus Lavandula. In Lavender: The genus Lavandula; Lis-Balchin, M., Ed.; CRC Press: London, UK, 2002; pp. 86–99.
[24]
Vladimir-Kne?evi?, S.; Kalo?era, Z.; Bla?evi?, N. Composition of the essential oil of Micromeria thymifolia (Scop.) Fritsch and its chemical variation. Pharmazie 2000, 55, 156–157.
[25]
Karousou, R.; Hanlidou, E.; Lazari, D. Essential-oil diversity of three Calamintha species from Greece. Chem. Biodivers. 2012, 9, 1364–1372, doi:10.1002/cbdv.201100262.
[26]
Marin, P.D.; Grayer, R.J.; Veitch, N.C.; Kite, G.C.; Harborne, J.B. Acacetin glycosides as taxonomic markers in Calamintha and Micromeria. Phytochemistry 2001, 58, 943–947, doi:10.1016/S0031-9422(01)00352-1.
[27]
Vrgo?, A. Uputa u farmakognoziju; Tiskara Dragutina Spullera u Samoboru: Zagreb, Croatia, 1931; pp. 331–344.
[28]
Ku?an, F. Ljekovito i Drugo Korisno Bilje; Poljoprivredni nakladni zavod: Zagreb, Croatia, 1956; pp. 439–465.
[29]
Red?i?, S. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll. Antropol. 2007, 31, 869–890.
[30]
Orhan, I.; Aslan, S.; Kartal, M.; ?ener, B.; Ba?er, K.H.C. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem. 2008, 108, 663–668, doi:10.1016/j.foodchem.2007.11.023.
[31]
Dastmalchi, K.; Ollilainen, V.; Lackman, P.; Boije af Genn?s, G.; Dorman, H.J.; J?rvinen, P.P.; Yli-Kauhaluoma, J.; Hiltunen, R. Acetylcholinesterase inhibitory guided fractionation of Melissa officinalis L. Bioorgan. Med. Chem. 2009, 17, 867–871, doi:10.1016/j.bmc.2008.11.034.
[32]
Falé, P.L.; Borges, C.; Madeira, P.J.A.; Ascens?o, L.; Araújo, M.E.M.; Florêncio, M.H.; Serralheiro, M.L. Rosmarinic acid, scutellarein 4'-methyl ether 7-O-glucuronide and (16S)-coleon E are the main compounds responsible for the antiacetylcholinesterase and antioxidant activity in herbal tea of Plectranthus barbatus (“falso boldo”). Food Chem. 2009, 114, 798–805, doi:10.1016/j.foodchem.2008.10.015.
[33]
Kovatcheva-Apostolova, E.G.; Georgiev, M.I.; Ilieva, M.P.; Skibsted, L.H.; R?dtjer, A.; Andersen, M.L. Extracts of plant cell cultures of Lavandula vera and Rosa damascena as sources of phenolic antioxidants for use in foods. Eur. Food Res. Technol. 2008, 227, 1243–1249, doi:10.1007/s00217-008-0842-x.
[34]
Petersen, M. Rosmarinic acid: New aspects. Phytochem. Rev. 2013, 12, 207–227, doi:10.1007/s11101-013-9282-8.
[35]
Bulgakov, V.P.; Inyushkina, Y.V.; Fedoreyev, S.A. Rosmarinic acid and its derivatives: Biotechnology and applications. Crit. Rev. Biotechnol. 2012, 32, 203–217, doi:10.3109/07388551.2011.596804.
[36]
Gholamhoseinian, A.; Moradi, M.N.; Sharifi-Far, F. Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity. Res. Pharm. Sci. 2009, 4, 105–112.
[37]
Adsersen, A.; Gauguin, B.; Gudiksen, L.; J?ger, A.K. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 2006, 104, 418–422, doi:10.1016/j.jep.2005.09.032.
[38]
Salah, S.M.; J?ger, A.K. Screening of traditionally used Lebanese herbs for neurological activities. J. Ethnopharmacol. 2005, 97, 145–149, doi:10.1016/j.jep.2004.10.023.
[39]
Mata, A.T.; Proen?a, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem. 2007, 103, 778–786, doi:10.1016/j.foodchem.2006.09.017.
[40]
Ferreira, A.; Proen?a, C.; Serralheiro, M.L.; Araújo, M.E. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37, doi:10.1016/j.jep.2006.04.010.
[41]
Dinis, P.C.; Falé, P.L.; Madeira, P.J.A.; Florêncio, M.H.; Serralheiro, M.L. Acetylcholinesterase inhibitory activity after in vitro gastrointestinal digestion of infusions of Mentha species. Eur. J. Med. Plants 2013, 3, 381–393.
[42]
Orhan, I.; Aslan, M. Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. J. Ethnopharmacol. 2009, 122, 327–332, doi:10.1016/j.jep.2008.12.026.
[43]
Silva, F.V.; Martins, A.; Salta, J.; Neng, N.R.; Nogueira, J.M.; Mira, D.; Gaspar, N.; Justino, J.; Grosso, C.; Urieta, J.S.; et al. Phytochemical profile and anticholinesterase and antimicrobial activities of supercritical versus conventional extracts of Satureja montana. J. Agric. Food Chem. 2009, 57, 11557–11563, doi:10.1021/jf901786p.
[44]
Oztürk, M.; Kolak, U.; Duru, M.E.; Harmandar, M. GC-MS analysis of the antioxidant active fractions of Micromeria juliana with anticholinesterase activity. Nat. Prod. Commun. 2009, 4, 1271–1276.
[45]
Vladimir-Kne?evi?, S.; Bla?ekovi?, B.; Bival ?tefan, M.; Babac, M. Plant Polyphenols as Antioxidants Influencing the Human Health. In Phytochemicals as Nutraceuticals–Global Approaches to Their Role in Nutrition and Health; Rao, V., Ed.; InTech: Rijeka, Croatia, 2012; pp. 155–180.
[46]
Teixeira, J.; Silva, T.; Andrade, P.B.; Borges, F. Alzheimer’s disease and antioxidant therapy: How long how far? Curr. Med. Chem. 2013, 20, 2939–2952, doi:10.2174/1871523011320240001.
Vladimir-Kne?evi?, S.; Bla?ekovi?, B.; Bival ?tefan, M.; Alegro, A.; K?szegi, T.; Petrik, J. Antioxidant activities and polyphenolic contents of three selected Micromeria species from Croatia. Molecules 2011, 16, 1454–1470, doi:10.3390/molecules16021454.
[49]
Mu?oz-Mu?oz, J.L.; Garcia-Molina, F.; Ros, E.; Tudela, J.; García-Canovas, F.; Rodriguez-Lopez, J.N. Prooxidant and antioxidant activities of rosmarinic acid. J. Food Biochem. 2013, 37, 396–408, doi:10.1111/j.1745-4514.2011.00639.x.
[50]
Maurya, D.K.; Devasagayam, T.P.A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol. 2010, 48, 3369–3373, doi:10.1016/j.fct.2010.09.006.
[51]
Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403, 136–138, doi:10.1016/j.ijpharm.2010.09.035.
[52]
Kivilompolo, M.; Hy?tyl?inen, T. Comprehensive two-dimensional liquid chromatography in analysis of Lamiaceae herbs: Characterisation and quantification of antioxidant phenolic acids. J. Chromatogr. A 2007, 1145, 155–164.
[53]
Zgórka, G.; G?owniak, K. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family. J. Pharm. Biomed. Anal. 2001, 26, 79–87, doi:10.1016/S0731-7085(01)00354-5.
[54]
Petersen, M.; Simmonds, M.S. Rosmarinic acid. Phytochemistry 2003, 62, 121–125, doi:10.1016/S0031-9422(02)00513-7.
[55]
Sharififar, F.; Dehghn-Nudeh, G.; Mirtajaldini, M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 2009, 112, 885–888, doi:10.1016/j.foodchem.2008.06.064.
[56]
Conforti, F.; Statti, G.A.; Tundis, R.; Loizzo, M.R.; Menichini, F. In vitro activities of Citrus medica L. cv. Diamante (Diamante citron) relevant to treatment of diabetes and Alzheimer’s disease. Phytother. Res. 2007, 21, 427–433, doi:10.1002/ptr.2077.
[57]
Bla?ekovi?, B.; Vladimir-Kne?evi?, S.; Brantner, A.; Bival ?tefan, M. Evaluation of antioxidant potential of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’: A comparative study with L. angustifolia Mill. Molecules 2010, 15, 5971–5987, doi:10.3390/molecules15095971.
[58]
European Directorate for the Quality of Medicines and Health Care (EDQM). European Pharmacopoeia, 4th ed. ed.; Council of Europe: Strasbourg, France, 2002; pp. 1866–1867.
[59]
Fecka, I.; Turek, S. Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: Peppermint, melissa, and sage. J. Agric. Food Chem. 2007, 55, 10908–10917, doi:10.1021/jf072284d.