Ferredoxin-NADP + reductase (FNR) catalyzes the electron transfer from ferredoxin to NADP + via its flavin FAD cofactor. To get further insights in the architecture of the transient complexes produced during the hydride transfer event between the enzyme and the NADP + coenzyme we have applied NMR spectroscopy using Saturation Transfer Difference (STD) techniques to analyze the interaction between FNR ox and the oxidized state of its NADP + coenzyme. We have found that STD NMR, together with the use of selected mutations on FNR and of the non-FNR reacting coenzyme analogue NAD +, are appropriate tools to provide further information about the the interaction epitope.
References
[1]
Aliverti, A.; Pandini, V.; Pennati, A.; de Rosa, M.; Zanetti, G. Structural and functional diversity of ferredoxin-NADP+ reductases. Arch. Biochem. Biophys. 2008, 474, 283–291, doi:10.1016/j.abb.2008.02.014.
[2]
Medina, M. Structural and mechanistic aspects of flavoproteins: Photosynthetic electron transfer from photosystem I to NADP+. FEBS J. 2009, 276, 3942–3958, doi:10.1111/j.1742-4658.2009.07122.x.
[3]
Hermoso, J.; Mayoral, T.; Faro, M.; Gómez Moreno, C.; Sanz Aparicio, J.; Medina, M. Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+. J. Mol. Biol. 2002, 319, 1133–1142, doi:10.1016/S0022-2836(02)00388-1.
[4]
Medina, M.; Luquita, A.; Tejero, J.; Hermoso, J.; Mayoral, T.; Sanz Aparicio, J.; Grever, K.; Gomez Moreno, C. Probing the determinants of coenzyme specificity in ferredoxin-NADP+ reductase by site-directed mutagenesis. J. Biol. Chem. 2001, 276, 11902–11912, doi:10.1074/jbc.M009287200.
[5]
Tejero, J.; Martínez Julvez, M.; Mayoral, T.; Luquita, A.; Sanz Aparicio, J.; Hermoso, J.; Hurley, J.; Tollin, G.; Gómez Moreno, C.; Medina, M. Involvement of the pyrophosphate and the 2'-phosphate binding regions of ferredoxin-NADP+ reductase in coenzyme specificity. J. Biol. Chem. 2003, 278, 49203–49214, doi:10.1074/jbc.M307934200.
[6]
Tejero, J.; Perez Dorado, I.; Maya, C.; Martinez-Julvez, M.; Sanz-Aparicio, J.; Gómez-Moreno, C.; Hermoso, J.A.; Medina, M. C-terminal tyrosine of ferredoxin-NADP+ reductase in hydride transfer processes with NAD(P)+/H. Biochemistry 2005, 44, 13477–13490, doi:10.1021/bi051278c.
[7]
Piubelli, L.; Aliverti, A.; Carrillo, N.; Arakaki, A.K.; Ceccarelli, E.A.; Karplus, P.A.; Zanetti, G. Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin-NADP(+) reductase. J. Biol. Chem. 2000, 275, 10472–10476, doi:10.1074/jbc.275.14.10472.
[8]
Musumeci, M.; Arakaki, A.; Rial, D.; Catalano Dupuy, D.; Ceccarelli, E. Modulation of the enzymatic efficiency of ferredoxin-NADP(H) reductase by the amino acid volume around the catalytic site. FEBS J. 2008, 275, 1350–1366, doi:10.1111/j.1742-4658.2008.06298.x.
[9]
Ceccarelli, E.; Arakaki, A.; Cortez, N.; Carrillo, N. Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochim. Biophys. Acta 1698, 155–165.
[10]
Deng, Z.; Aliverti, A.; Zanetti, G.; Ottado, J.; Arakaki, A.K.; Orellano, E.G.; Calcaterra, N.B.; Ceccarelli, E.A.; Carrillo, N.; Karplus, P.A. A productive NADP+ binding mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat. Struct. Biol. 1999, 6, 847–853, doi:10.1038/12307.
[11]
Nogues, I.; Tejero, J.; Hurley, J.; Paladini, D.; Frago, S.; Tollin, G.; Mayhew, S.; Gómez Moreno, C.; Ceccarelli, E.; Carrillo, N.; et al. Role of the C-terminal tyrosine of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase in the electron transfer processes with its protein partners ferredoxin and flavodoxin. Biochemistry 2004, 43, 6127–6137, doi:10.1021/bi049858h.
[12]
Lans, I.; Medina, M.; Rosta, E.; Hummer, G.; Garcia-Viloca, M.; Lluch, J.M.; Gonzalez-Lafont, A. Theoretical study of the mechanism of the hydride transfer between ferredoxin-NADP(+) reductase and NADP(+): The role of Tyr303. J. Am. Chem. Soc. 2012, 134, 20544–20553.
[13]
Lans, I.; Peregrina, J.R.; Medina, M.; Garcia Viloca, M.; González Lafont, A.; Lluch, J.M. Mechanism of the hydride transfer between Anabaena Tyr303Ser FNR(rd)/FNR(ox) and NADP+/H. A combined pre-steady-state kinetic/ensemble-averaged transition-state theory with multidimensional tunneling study. J. Phys. Chem. B 2010, 114, 3368–3379.
[14]
Peregrina, J.R.; Lans, I.; Medina, M. The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP(+)-reductase. Eur. Biophys. J. 2012, 41, 117–128, doi:10.1007/s00249-011-0704-5.
[15]
Nogues, I.; Perez Dorado, I.; Frago, S.; Bittel, C.; Mayhew, S.; Gomez Moreno, C.; Hermoso, J.; Medina, M.; Cortez, N.; Carrillo, N. The ferredoxin-NADP(H) reductase from Rhodobacter capsulatus: Molecular structure and catalytic mechanism. Biochemistry 2005, 44, 11730–11740, doi:10.1021/bi0508183.
[16]
Peregrina, J.R.; Sanchez-Azqueta, A.; Herguedas, B.; Martinez-Julvez, M.; Medina, M. Role of specific residues in coenzyme binding, charge-transfer complex formation, and catalysis in Anabaena ferredoxin NADP(+)-reductas. Biochim. Biophys. Acta 2010, 1797, 1638–1646, doi:10.1016/j.bbabio.2010.05.006.
[17]
Mayer, M.; Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 1999, 38, 1784–1788, doi:10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q.
[18]
Maeda, M.; Lee, Y.H.; Ikegami, T.; Tamura, K.; Hoshino, M.; Yamazaki, T.; Nakayama, M.; Hase, T.; Goto, Y. Identification of the N- and C-terminal substrate binding segments of ferredoxin-NADP+ reductase by NMR. Biochemistry 2005, 44, 10644–10653, doi:10.1021/bi050424b.
[19]
Wang, A.; Rodri?guez, J.C.; Han, H.; Scho?nbrunn, E.; Rivera, M. X-ray crystallographic and solution state nuclear magnetic resonance spectroscopic investigations of NADP+ binding to ferredoxin NADP reductase from Pseudomonas aeruginosa. Biochemistry 2008, 47, 8080–8093, doi:10.1021/bi8007356.
[20]
Meyer, B.; Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. 2003, 42, 864–890, doi:10.1002/anie.200390233.
[21]
Lepre, C.A.; Moore, J.M.; Peng, J.W. Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev. 2004, 104, 3641–3675, doi:10.1021/cr030409h.
[22]
Pellecchia, M. Solution nuclear magnetic resonance spectroscopy techniques for probing intermolecular interactions. Chem. Biol. 2005, 12, 961–971, doi:10.1016/j.chembiol.2005.08.013.
[23]
Angulo, J.; Nieto, P.M. STD-NMR: Application to transient interactions between biomolecules-a quantitative approach. Eur. Biophys. J. 2011, 40, 1357–1369, doi:10.1007/s00249-011-0749-5.
[24]
Morales, R.; Kachalova, G.; Vellieux, F.; Charon, M.H.; Frey, M. Crystallographic studies of the interaction between the ferredoxin-NADP(+) reductase and ferredoxin from the cyanobacterium Anabaena: Looking for the elusive ferredoxin molecule. Acta Crystallogr. Sect. D Biol. Crystallogr. 2000, 56, 1408–1412, doi:10.1107/S0907444900010052.
[25]
Tejero, J.; Peregrina, J.R.; Martínez-Júlvez, M.; Gutiérrez, A.; Gómez-Moreno, C.; Scrutton, N.S.; Medina, M. Catalytic mechanism of hydride transfer between NADP+/H and ferredoxin-NADP+ reductase from Anabaena PCC 7119. Arch. Biochem. Biophys. 2007, 459, 79–90, doi:10.1016/j.abb.2006.10.023.
[26]
Peregrina, J.R.; Herguedas, B.; Hermoso, J.A.; Martinez-Julvez, M.; Medina, M. Protein motifs involved in coenzyme interaction and enzymatic efficiency in Anabaena ferredoxin-NADP(+) reductase. Biochemistry 2009, 48, 3109–3119, doi:10.1021/bi802077c.
[27]
Mayer, M.; Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 2001, 123, 6108–6117, doi:10.1021/ja0100120.
[28]
Neffe, A.T.; Bilang, M.; Gruneberg, I.; Meyer, B. Rational optimization of the binding affinity of CD4 targeting peptidomimetics with potential anti HIV activity. J. Med. Chem. 2007, 50, 3482–3488, doi:10.1021/jm070206b.
[29]
Pickhardt, M.; Larbig, G.; Khlistunova, I.; Coksezen, A.; Meyer, B.; Mandelkow, E.M.; Schmidt, B.; Mandelkow, E. Phenylthiazolyl-hydrazide and its derivatives are potent inhibitors of tau aggregation and toxicity in vitro and in cells. Biochemistry 2007, 46, 10016–10023, doi:10.1021/bi700878g.
[30]
Angulo, J.; Enriquez-Navas, P.M.; Nieto, P.M. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: The binding isotherm of STD initial growth rates. Chemistry 2010, 16, 7803–7812, doi:10.1002/chem.200903528.
[31]
Krishna, N.R.; Jayalakshmi, V. Complete relaxation and conformational exchange matrix analysis of STD-NMR spectra of ligand-receptor complexes. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 1–25, doi:10.1016/j.pnmrs.2006.03.002.
[32]
Krishna, N.R.; Jayalakshmi, V. Quantitative analysis of STD-NMR spectra of reversibly forming ligand-receptor complexes. Top. Curr. Chem. 2008, 273, 15–54, doi:10.1007/128_2007_144.
[33]
Jayalakshmi, V.; Krishna, N.R. CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities. J. Magn. Reson. 2004, 168, 36–45, doi:10.1016/j.jmr.2004.01.017.
[34]
Mayer, M.; James, T.L. NMR-based characterization of phenothiazines as a RNA binding scaffold. J. Am. Chem. Soc. 2004, 126, 4453–4460, doi:10.1021/ja0398870.
[35]
Neal, S.; Nip, A.M.; Zhang, H.; Wishart, D.S. Rapid and accurate calculation of protein H-1, C-13 and N-15 chemical shifts. J. Biomol. NMR 2003, 26, 215–240, doi:10.1023/A:1023812930288.
[36]
Xu, Y.; Sugar, I.P.; Krishna, N.R. A variable target intensity-restrained global optimization (VARTIGO) procedure for determining three-dimensional structures of polypeptides from NOESY data: Application to gramicidin-S. J. Biomol. NMR 1995, 5, 37–48, doi:10.1007/BF00227468.
[37]
Krishna, N.R.; Agresti, D.G.; Glickson, J.D.; Walter, R. Solution conformation of peptides by the intramolecular nuclear Overhauser effect experiment. Study of valinomycin-K+. Biophys. J. 1978, 24, 791–814, doi:10.1016/S0006-3495(78)85421-6.