Transition Metal Complexes and Radical Anion Salts of 1,10-Phenanthroline Derivatives Annulated with a 1,2,5-Tiadiazole and 1,2,5-Tiadiazole 1,1-Dioxide Moiety: Multidimensional Crystal Structures and Various Magnetic Properties
Advances in the molecular variety and the elucidation of the physical properties of 1,10-phenanthroline annulated with 1,2,5-thiadiazole and 1,2,5-thiadiazole 1,1-dioxide moieties have been achieved, and are described herein. A 1,2,5-thiadiazole compound, [1,2,5]thiadiazolo[3,4- f][1,10]phenanthroline (tdap), was used as a ligand to create multidimensional network structures based on S???S and S???N intermolecular interactions. A 1,2,5-thiadiazole 1,1-dioxide compound, [1,2,5] thiadiazolo[3,4- f][1,10]phenanthroline, 1,1-dioxide (tdapO 2), was designed to create a stable radical anion, as well as good network structures. Single crystal X-ray structure analyses revealed that transition metal complexes of tdap, and radical anion salts of tdapO 2 formed multidimensional network structures, as expected. Two kinds of tdap iron complexes, namely [Fe(tdap) 2(NCS) 2] and [Fe(tdap) 2(NCS) 2]?MeCN exhibited spin crossover transitions, and their transition temperatures showed a difference of 150 K, despite their similar molecular structures. Magnetic measurements for the tdapO 2 radical anion salts revealed that the magnetic coupling constants between neighboring radical species vary from strongly antiferromagnetic ( J = ?320 K) to ferromagnetic ( J = 24 K), reflecting the differences in their π overlap motifs.
References
[1]
Akamatu, H.; Inokuchi, H.; Matsunaga, Y. Electrical conductivity of the perylene-brimine complex. Nature 1954, 173, 168–169, doi:10.1038/173168a0.
[2]
Ferraris, J.; Cowan, D.O.; Walatka, V., Jr.; Perlsteri, J.H. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 1973, 95, 948–949, doi:10.1021/ja00784a066.
[3]
Cohen, M.J.; Coleman, L.B.; Garito, A.F.; Heeger, A. Electrical conductivity of tetrathiofulvalinium tetracyanoquinodimethan (TTF) (TCNQ). J. Phys. Rev. B 1974, 10, 1298–1307, doi:10.1103/PhysRevB.10.1298.
[4]
Saito, G.; Enoki, T.; Toriumi, K.; Inokuchi, H. Two-dimensionality and suppression of metal-semiconductor transition in a new organic metal with Alkylthio substituted TTF and Perchlorate. Solid State Commun. 1982, 42, 557–560, doi:10.1016/0038-1098(82)90607-X.
[5]
Tanaka, H.; Okano, Y.; Kobayashi, H.; Suzuki, W.; Kobayashi, A. A Three-dimensional synthetic metallic crystal composed of single-component molecules. Science 2001, 291, 285–287, doi:10.1126/science.291.5502.285.
[6]
Kobayashi, H.; Kobayashi, A.; Tajima, H. Studies on molecular conductors: From organic semiconductors to molecular metals and superconductors. Chem. Asian J. 2011, 6, 1688–1704, doi:10.1002/asia.201100061.
[7]
Isono, T.; Kamo, H.; Ueda, A.; Takahashi, K.; Nakao, A.; Kumai, R.; Nakao, H.; Kobayashi, K.; Murakami, Y.; Mori, H. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 2013, 4, doi:10.1038/ncomms2352.
Jerome, D.; Mazaud, A.; Ribault, M.; Bechgaard, K. Superconductivity in a synthetic organic conductor (TMSF)2PF6. J. Phys. Lett. 1980, 41, 95–98, doi:10.1051/jphyslet:0198000410409500.
[10]
Bechgaard, K.; Carneiro, K.; Rasmussen, F.B.; Olsen, M.; Rindorf, G.; Jacobsen, C.S.; Pedersen, H.J.; Scott, J.C. Superconductivity in an organic solid. Synthesis, Structure, and conductivity of Bis(tetramethyltetraselenafulvalenium) Perchlorate (TMTSF)2ClO4. J. Am. Chem. Soc. 1981, 103, 2440–2442, doi:10.1021/ja00399a065.
[11]
Parkin, S.S.P.; Ribault, M.; Jerome, D.; Bechgaard, K. Superconductivity in the family of organic salts based on the Tetramethyltetraselenafulvalene (TMTSF) molecule: (TMTSF)2X (X = ClO4, PF6, AsF6, SbF6, TaF6). J. Phys. C 1981, 14, 5305–5326, doi:10.1088/0022-3719/14/34/011.
[12]
Tanigaki, K.; Ebbesen, T.W.; Saito, S.; Mizuki, J.; Tsai, J.S.; Kubo, Y.; Kuroshima, S. Superconductivity at 33 K in CsxRbyC60. Nature 1991, 352, 222–223, doi:10.1038/352222a0.
Hebard, A.F.; Rosseinsky, M.J.; Haddon, R.C.; Murphy, D.W.; Glarum, S.H.; Palstra, T.T.M.; Ramirez, A.P.; Kortan, A.R. Superconductivity at 18 K in Potassium-Doped C60. Nature 1991, 350, 600–601, doi:10.1038/350600a0.
[15]
Kinoshita, M.; Turek, P.; Tamura, M.; Nozawa, K.; Shiomi, D.; Nakazawa, Y.; Ishikawa, M.; Takahashi, M.; Awaga, K.; Inabe, T.; et al. An organic radical ferromagnet. Chem. Lett. 1991, 20, 1225–1228.
[16]
Takahashi, M.; Turek, P.; Nakazawa, Y.; Tamura, M.; Nozawa, K.; Shiomi, D.; Ishikawa, M.; Kinoshita, M. Discovery of a quasi-1D organic ferromagnet, p-NPNN. Phys. Rev. Lett. 1991, 67, 746–748, doi:10.1103/PhysRevLett.67.746.
[17]
Turek, P.; Nozawa, K.; Shiomi, D.; Awaga, K.; Inabe, T.; Maruyama, Y.; Kinoshita, M. Ferromagnetic coupling in a new phase of the p-Nitrophenyl Nitronyl Nitroxide radical. Chem. Phys. Lett. 1991, 180, 327–331, doi:10.1016/0009-2614(91)90328-7.
[18]
Deumal, M.; Rawson, J.M.; Goeta, A.E.; Howard, J.A.K.; Copley, R.C.B.; Robb, M.A.; Novoa, J.J. Studying the origin of the antiferromagnetic to spin-canting transition in the β-p-NCC6F4CNSSN? molecular magnet. Chem. Eur. J. 2010, 16, 2741–2750.
[19]
Kohler, C.P.; Jakobi, R.; Meissner, E.; Wiehl, L.; Spiering, H.; Gutlich, P. Nature of the phase transition in spin crossover compounds. J. Phys. Chem. Solids 1990, 51, 239–247, doi:10.1016/0022-3697(90)90052-H.
[20]
Adams, D.M.; Dei, A.; Rheingold, A.L.; Hendrickson, D.N. Bistability in the [CoII(semiquinonate)2] to [CoIII(catecholate)(semiquinonate)] Valence-Tautomeric conversion. J. Am. Chem. Soc. 1993, 115, 8221–8229, doi:10.1021/ja00071a035.
[21]
Sato, O.; Tao, J.; Zhang, Y. Control of magnetic properties through external stimuli. Angew. Chem. Int. 2007, 46, 2152–2187.
[22]
Dunbar, K.R.; Heintz, R.A. Chemistry of transition metal cyanide compounds: Modern perspectives. Prog. Inorg. Chem. 1997, 45, 283–391.
[23]
Ohba, M.; Okawa, H. Synthesis and magnetism of multi-dimensional cyanide-bridged bimetallic assemblies. Coord. Chem. Rev. 2000, 198, 313–328, doi:10.1016/S0010-8545(00)00233-2.
[24]
Clement, R.; Decurtins, S.; Gruselle, M.; Train, C. Polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets. Monatsh. Chem. 2003, 134, 117–135, doi:10.1007/s00706-002-0491-x.
Clemente-Leon, M.; Coronado, E.; Marti-Gastaldo, C.; Romero, F.M. Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. Chem. Soc. Rev. 2011, 40, 473–497, doi:10.1039/c0cs00111b.
[27]
Gatteschi, D.; Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. 2003, 42, 268–297.
[28]
Awaga, K.; Nomura, K.; Kishida, H.; Fujita, W.; Yoshikawa, H.; Matsushita, M.M.; Hu, L.; Shuku, Y.; Suizu, R. Electron transfer processes in highly-correlated electron systems of Thiazyl radicals. Bull. Chem. Soc. Jpn. 2014. in press.
Rawson, J.M.; Banister, A.J.; Lavender, I. The chemistry of dithiadiazolylium and dithiadiazolyl rings. Adv. Heterocycl. Chem. 1995, 62, 137–247.
[31]
Rawson, J.M.; McManus, G.D. Benzo-fused Dithiazolyl radicals: From chemical curiosities to materials chemistry. Coord. Chem. Rev. 1999, 189, 135–168, doi:10.1016/S0010-8545(99)00118-6.
[32]
Rawson, J.M.; Palacio, F. Magnetic properties of Thiazyl radicals. Struct. Bond. 2001, 100, 93–128, doi:10.1007/3-540-44684-2_4.
[33]
Awaga, K.; Tanaka, T.; Shirai, T.; Fujimori, M.; Suzuki, Y.; Yoshikawa, H.; Fujita, W. Multi-dimensional crystal structures and unique solid-state properties of Heterocyclic Thiazyl radicals and related materials. Bull. Chem. Soc. Jpn. 2006, 79, 25–34, doi:10.1246/bcsj.79.25.
[34]
Conte, G.; Bortoluzzi, A.J.; Gallardo, H. [1,2,5]Thiadiazolo[3,4-f][1,10]phenanthroline as a building block for organic materials. Synthesis 2006, 2006, 3945–3947, doi:10.1055/s-2006-950323.
[35]
Castellano, E.E.; Piro, O.E.; Caram, J.A.; Mirifico, M.V.; Aimone, S.L.; Vasini, E.J.; Glossman, M.D. Crystallographic study and molecular orbital calculations of 1,2,5-Thiadiazole 1,1-dioxide derivatives. J. Phys. Org. Chem. 1998, 11, 91–100, doi:10.1002/(SICI)1099-1395(199802)11:2<91::AID-POC976>3.0.CO;2-2.
Miller, J.S. Tetracyanoethylene (TCNE). The characteristic geometries and vibrational absorptions of its numerous structures. Angew.Chem. Int. 2006, 45, 2508–2525.
[39]
Heintz, R.A.; Zhao, H.; Ouyang, X.; Grandinetti, G.; Cowen, J.; Dunbar, K.R. New insight into the nature of Cu(TCNQ): Solution routes to two distinct polymorphs and their relationship to Crystalline films that display bistable switching behavior. Inorg. Chem. 1999, 38, 144–156, doi:10.1021/ic9812095.
[40]
O’Kane, S.A.; Clerac, R.; Zhao, H.; Ouyang, X.; Galan-Mascaros, J.R.; Heintz, R.; Dunbar, K.R. New Crystalline Polymers of Ag(TCNQ) and Ag(TCNQF4): Structures and magnetic properties. J. Solid State Chem. 2000, 152, 159–173, doi:10.1006/jssc.2000.8679.
Kato, R. Conductive copper salts of 2,5-disubstituted n,n’-dicyanobenzoquinonediimines (dcnqis): Structural and physical properties. Bull. Chem. Soc. Jpn. 2000, 73, 515–534, doi:10.1246/bcsj.73.515.
[43]
Pierpont, C.G.; Buchanan, R.M. Transition metal complexes of O-benzoquinone, O-semiquinone, and catecholate ligands. Coord. Chem. Rev. 1981, 38, 45–87, doi:10.1016/S0010-8545(00)80499-3.
[44]
Pierpont, C.G. Unique properties of transition metal Quinone complexes of the MQ3 series. Coord. Chem. Rev. 2001, 219–221, 415–433, doi:10.1016/S0010-8545(01)00342-3.
[45]
Evangelio, E.; Ruiz-Molina, D. Valence tautomerism: New challenges for electroactive ligands. Eur. J. Inorg. Chem. 2005, 2005, 2957–2971, doi:10.1002/ejic.200500323.
Shuku, Y.; Suizu, R.; Awaga, K. Monovalent and mixed-valent potassium salts of [1,2,5]Thiadiazolo[3,4-f][1,10]phenanthroline 1,1-Dioxide: A radical anion for multidimensional network structures. Inorg. Chem. 2011, 50, 11859–11861, doi:10.1021/ic201966t.
[48]
Shuku, Y.; Suizu, R.; Domingo, A.; Calzado, C.J.; Robert, V.; Awaga, K. Multidimensional network structures and versatile magnetic properties of intermolecular compounds of a radical–anion ligand, [1,2,5]Thiadiazolo[3,4-f][1,10]phenanthroline 1,1-Dioxide. Inorg. Chem. 2013, 52, 9921–9930, doi:10.1021/ic401078z.
[49]
Gallardo, H.; Conte, G.; Tuzimoto, P.; Bortoluzzi, A.; Peralta, R.A.; Neves, A. Synthesis, crystal structure and luminescent properties of new Tris-β-diketonate Eu(III) complexes with Thiadiazolophenanthroline derivative ligand. Inorg. Chem. Commun. 2008, 11, 1292–1296, doi:10.1016/j.inoche.2008.08.005.
[50]
Gallardo, H.; Conte, G.; Bortoluzzi, A.J.; Bechtold, I.H.; Pereira, A.; Quirino, W.G.; Legnani, C.; Cremona, M. Synthesis, structural characterization, and photo and electroluminescence of a novel Terbium (III) complex: {Tris (acetylacetonate) [1,2,5]Thiadiazolo[3,4-f][1,10] phaenanthroline} terbium(III). Inorg. Chim. Acta 2011, 365, 152–158, doi:10.1016/j.ica.2010.09.003.
[51]
De Souza, B.; Xavier, F.R.; Peralta, R.A.; Bortoluzzi, A.J.; Conte, G.; Gallardo, H.; Fischer, F.L.; Bussi, G.; Terenzi, H.; Neves, A. Oxygen-independent photonuclease activity of a new Iron(II) COMPLEX. Chem. Commun. 2010, 46, 3375–3377, doi:10.1039/b922560a.
[52]
Crystallographic data for the compounds discussed in this review that have not previously been published are available through Cambridge Crystallographic Data Centre (CCDC): CCDC 969113 ([Co(tdap)2(NCS)2]), CCDC 969114 ([Mn(tdap)2Cl2]), CCDC 969115 ([Mn(tdap)2(NCS)2]?MeCN), CCDC 969116 ([Fe(tdap)2(NCS)2]?MeCN at 120 K), CCDC 969117 ([Fe(tdap)2(NCS)2]?MeCN at 320 K), CCDC 969118 ([Co(tdap)2(NCS)2]?MeCN), CCDC 969119 ([Ni(tdap)2(NCS)2]?MeCN), CCDC 969120 ([Cu(tdap)2(NCS)2]?MeCN), CCDC 969121 ([Zn(tdap)2(NCS)2]?MeCN), CCDC 969122 ([Cu2(tdap)2(NCS)2]), CCDC 969123 ([Cu2(tdap)2(NCS)4]), and CCDC 9691224 ([CoCp]2?tdapO2). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).
[53]
Shuku, Y.; Suizu, R.; Awaga, K.; Sato, O. Fe(II) spincrossover complex of [1,2,5]Thiadiazolo[3,4-f][1,10]phenanthroline. Cryst. Eng. Comm. 2009, 11, 2065–2068, doi:10.1039/b906845g.
[54]
Gallois, B.; Real, J.A.; Hauw, C.; Zarembowich, J. Structural changes associated with the spin transition in Fe(phen)2(NCS)2: A single-crystal X-ray investigation. Inorg. Chem. 1990, 29, 1152–1158, doi:10.1021/ic00331a009.
[55]
Guionneau, P.; Marchivie, M.; Bravic, G.; Letard, J.F.; Chasseau, D. Structural aspects of spin crossover example of the [Fe(II)Ln(NCS)2] complexes. Top. Curr. Chem. 2004, 234, 97–128, doi:10.1007/b95414.
[56]
Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451, doi:10.1021/j100785a001.
[57]
Caram, J.A.; Mirifico, M.V.; Vasini, E.J. Electrochemistry of 3,4-Diphenyl-1,2,5-thiadiazole 1, 1-dioxide (1) and its derivatives in ethanol-acetonitrile solutions and interactions of the dianion of 1 with metal cations. Electrochim. Acta 1994, 39, 939–945, doi:10.1016/0013-4686(94)85109-3.
[58]
Caram, J.A.; Mirifico, M.V.; Aimone, S.L.; Vasini, E.J. 3,4-Disubstituted derivatives of 1,2,5-thiadiazole 1,1-Dioxide. Ethanol addition reactions and electroreduction of 3-Methyl-4-phenyl and 3,4-Dimethyl derivatives in acetonitrile and ethanol solvents. Can. J. Chem. 1996, 74, 1564–1571, doi:10.1139/v96-173.
[59]
Caram, J.A.; Mirifico, M.V.; Aimone, S.L.; Piro, O.E.; Castellano, E.E.; Vasini, E.J. The addition reaction of diamides to 1,2,5-Thiadiazole 1,1-Dioxide Derivatives. J. Phys. Org. Chem. 2004, 17, 1091–1098, doi:10.1002/poc.829.
[60]
Yamada, M.; Tanaka, Y.; Yoshimoto, Y.; Kuroda, S.; Shimao, I. Synthesis and properties of diamino-substituted Dipyrido [3,2-a: 2’,3’-c]Phenazine. Bull. Chem. Soc. Jpn. 1992, 65, 1006–1011.
[61]
Chambers, J.Q. Electrochemistry of Quinones. In The Chemistry of the Quinonoid Compounds; Patai, S., Ed.; John Wiley & Sons: New York, NY, USA, 1974; pp. 737–791.
[62]
Peover, M.E. A polarographic investigation into the redox behavior of quinones: The roles of electron affinity and solvent. J. Chem. Soc. 1962, 4540–4549, doi:10.1039/jr9620004540.
[63]
Davis, K.M.; Hammond, P.R.; Peover, M.E. Electron affinities of monosubstituted benzoquinones. Trans. Faraday Soc. 1965, 61, 1516–1522, doi:10.1039/tf9656101516.
[64]
Ryba, O.; Pilar, J.; Petranek, J. Polarographic and electron paramagnetic resonance study of one electron reduction of Alkylated Benzoquinones. Collect. Czech. Chem. Commun. 1968, 33, 26–34, doi:10.1135/cccc19680026.
[65]
McConnell, H.M. Spin density matrices for paramagnetic molecules. J. Chem. Phys. 1958, 28, 1188–1192, doi:10.1063/1.1744365.
[66]
McConnell, H.M.; Stathdee, J. Theory of anisotropic hyperfine interactions in π-electron radicals. Mol. Phys. 1959, 2, 129–138, doi:10.1080/00268975900100121.
[67]
Talcott, C.L.; Myers, R.J. Electron spin resonance spectra of the radical anions of pyridine and related nitrogen heterocyclics. Mol. Phys. 1967, 12, 549–567, doi:10.1080/00268976700100721.
[68]
Carrington, A.; dos Santos-Veiga, J. Electron spin resonance spectra of Nitrogen Heterocyclic radical Ions. Mol. Phys. 1962, 5, 21–29, doi:10.1080/00268976200100031.
[69]
Kahn, O. Molecular Magnetism; Wiley-VHC: Weinheim, Germany, 1993.
[70]
Bonner, J.C.; Fisher, M.E. Linear magnetic chains with anisotropic coupling. Phys. Rev. A 1964, 135, A640–A658, doi:10.1103/PhysRev.135.A640.
[71]
Estes, W.E.; Gavel, D.P.; Hatfield, W.E.; Hodgson, D.J. Magnetic and structural characterization of Dibromo- and Dichlorobis(thiazole)copper(II). Inorg. Chem. 1978, 17, 1415–1421, doi:10.1021/ic50184a005.
[72]
Bleaney, B.; Bowers, K.D. Anomalous paramagnetism of copper acetate. Proc. R. Soc. 1952, 214, 451–465, doi:10.1098/rspa.1952.0181.
[73]
Robin, M.B.; Day, P. Mixed valence chemistry—a survey and classification. Adv. Inorg. Chem. Radiochem. 1967, 10, 247–422.
[74]
Kimura, S.; Suzuki, H.; Maejima, T.; Mori, H.; Yamaura, J.; Kakiuchi, T.; Sawa, H.; Moriyama, H. Checkerboard-type charge-ordered state of a pressure-induced superconductor, β-(meso-DMBEDT-TTF)2PF6. J. Am. Chem. Soc. 2006, 128, 1456–1457, doi:10.1021/ja057307o.
Awaga, K.; Okuno, T.; Yamaguchi, A.; Hasegawa, M.; Inabe, T.; Maruyama, Y.; Wada, N. Variable magnetic interactions in an organic radical system of (m-N-Methylpyridinium α-Nitronyl Nitroxide)?X?: A possible Kagomé antiferromagnet. Phys. Rev. B 1994, 49, 3975–3981, doi:10.1103/PhysRevB.49.3975.
[77]
Baker, G.A.; Rushbrooke, G.S.; Gilbert, H.E. High-temperature series expansions for the spin?1/2 heisenberg model by the method of irreducible representations of the symmetric group. Phys. Rev. 1964, 135, A1272–A1277, doi:10.1103/PhysRev.135.A1272.
[78]
Rota, J.B.; le Guennic, B.; Robert, V. Toward Verdazyl radical-based materials: Ab Initio inspection of potential organic candidates for spin-crossover phenomenon. Inorg. Chem. 2010, 49, 1230–1237, doi:10.1021/ic902197f.