全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Molecules  2014 

Hormesis of Glyceollin I, an Induced Phytoalexin from Soybean, on Budding Yeast Chronological Lifespan Extension

DOI: 10.3390/molecules19010568

Keywords: chronological life span, glyceollin I, hormesis, induced phytoalexin, aging

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glyceollin I, an induced phytoalexin isolated from soybean, has been reported to have various bioactivities, including anti-bacterial, anti-nematode, anti-fungal, anti-estrogenic and anti-cancer, anti-oxidant, anti-inflammatory, insulin sensitivity enhancing, and attenuation of vascular contractions. Here we show that glyceollin I has hormesis and extends yeast life span at low (nM) doses in a calorie restriction (CR)-dependent manner, while it reduces life span and inhibits yeast cell proliferation at higher (μM) doses. In contrast, the other two isomers (glyceollin II and III) cannot extend yeast life span and only show life span reduction and antiproliferation at higher doses. Our results in anti-aging activity indicate that glyceollin I might be a promising calorie restriction mimetic candidate, and the high content of glyceollins could improve the bioactivity of soybean as functional food ingredients.

References

[1]  Francisco, M.L.D.L.; Resurreccion, A.V.A. Functional components in peanuts. Crit. Rev. Food Sci. Nutr. 2008, 48, 715–746, doi:10.1080/10408390701640718.
[2]  Wu, Z.; Song, L.; Feng, S.; Liu, Y.; He, G.; Yioe, Y.; Liu, S.; Huang, D. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds. J. Agric. Food Chem. 2012, 60, 8606–8615, doi:10.1021/jf3021514.
[3]  Van Loon, L.; Rep, M.; Pieterse, C. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 2006, 44, 135–162, doi:10.1146/annurev.phyto.44.070505.143425.
[4]  Hammerschmidt, R. Phytoalexins: What have we learned after 60 years? Annu. Rev. Phytopathol. 1999, 37, 285–306, doi:10.1146/annurev.phyto.37.1.285.
[5]  Boue, S.; Cleveland, T.; Carter-Wientjes, C.; Shih, B.; Bhatnagar, D.; McLachlan, J.; Burow, M. Phytoalexin-enriched functional foods. J. Agric. Food Chem. 2009, 57, 2614–2622, doi:10.1021/jf8040403.
[6]  Feng, S.; Saw, C.; Lee, Y.; Huang, D. Novel process of fermenting black soybean [Glycine max (L.) Merrill] yogurt with dramatically reduced flatulence-causing oligosaccharides but enriched soy phytoalexins. J. Agric. Food Chem. 2008, 56, 10078–10084, doi:10.1021/jf801905y.
[7]  Feng, S.; Song, L.; Lee, Y.; Huang, D. The effects of fungal stress on the antioxidant contents of black soybeans under Germination. J. Agric. Food Chem. 2010, 58, 12491–12496, doi:10.1021/jf102926r.
[8]  Wu, Z.; Song, L.; Huang, D. Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants. J. Agric. Food Chem. 2011, 59, 5993–6003, doi:10.1021/jf200776w.
[9]  Pervaiz, S.; Holme, A. Resveratrol: Its biologic targets and functional activity. Antioxid. Redox Signal. 2009, 11, 2851–2897, doi:10.1089/ars.2008.2412.
[10]  McCay, C.M.; Crowell, M.F.; Maynard, L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size: One figure. J. Nutr. 1935, 10, 63.
[11]  Mair, W.; Dillin, A. Aging and survival: The genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 2008, 77, 727–754, doi:10.1146/annurev.biochem.77.061206.171059.
[12]  Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506, doi:10.1038/nrd2060.
[13]  Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425, 191–196, doi:10.1038/nature01960.
[14]  Harrison, D.E.; Strong, R.; Sharp, Z.D.; Nelson, J.F.; Astle, C.M.; Flurkey, K.; Nadon, N.L.; Wilkinson, J.E.; Frenkel, K.; Carter, C.S.; et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460, 392–395.
[15]  Steinkraus, K.A.; Kaeberlein, M.; Kennedy, B.K. Replicative aging in yeast: The means to the end. Annu. Rev. Cell Dev. Biol. 2008, 24, 29–54, doi:10.1146/annurev.cellbio.23.090506.123509.
[16]  Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342, doi:10.1038/nature05354.
[17]  Mattson, M. Hormesis defined. Age Res. Rev. 2008, 7, 1–7, doi:10.1016/j.arr.2007.08.007.
[18]  Saul, N.; Pietsch, K.; Stürzenbaumb, S.R.; Menzel, R.; Steinberg, C.E.W. Hormesis and longevity with tannins: Free of charge or cost-intensive? Chemosphere 2013, 93, 1005–1008, doi:10.1016/j.chemosphere.2013.05.069.
[19]  Howitz, K.; Sinclair, D. Xenohormesis: Sensing the chemical cues of other species. Cell 2008, 133, 387–391, doi:10.1016/j.cell.2008.04.019.
[20]  Gems, D.; Partridge, L. Stress-response hormesis and aging. Cell Metab. 2008, 7, 200–203, doi:10.1016/j.cmet.2008.01.001.
[21]  Wu, Z.; Song, L.; Liu, S.Q.; Huang, D. A high throughput screening assay for determination of chronological lifespan of yeast. Exp. Gerontol. 2011, 46, 915–922, doi:10.1016/j.exger.2011.08.002.
[22]  Feng, S.; Saw, C.L.; Lee, Y.K.; Huang, D. Fungal-stressed germination of black soybeans leads to generation of oxooctadecadienoic acids in addition to glyceollins. J. Agric. Food Chem. 2007, 55, 8589–8595, doi:10.1021/jf0716735.
[23]  Ng, T.B.; Ye, X.J.; Wong, J.H.; Fang, E.F.; Chan, Y.S.; Pan, W.; Ye, X.Y.; Sze, S.C.; Zhang, K.Y.; Liu, F.; et al. Glyceollin, a soybean phytoalexin with medicinal properties. Appl. Microbiol. Biotechnol. 2011, 90, 59–68, doi:10.1007/s00253-011-3169-7.
[24]  Khupse, R.S.; Sarver, J.G.; Trendel, J.A.; Bearss, N.R.; Reese, M.D.; Wiese, T.E.; Boue, S.M.; Burow, M.E.; Cleveland, T.E.; Bhatnagar, D.; et al. Biomimetic syntheses and antiproliferative activities of racemic, natural (?), and unnnatural (+) glyceollin I. J. Med. Chem. 2011, 54, 3506–3523, doi:10.1021/jm101619e.
[25]  Zimmermann, M.C.; Tilghman, S.L.; Boue, S.M.; Salvo, V.A.; Elliott, S.; Williams, K.Y.; Skripnikova, E.V.; Ashe, H.; Payton-Stewart, F.; Vanhoy-Rhodes, L.; et al. Glyceollin I, a novel antiestrogenic phytoalexin isolated from activated soy. J. Pharmacol. Exp. Ther. 2010, 332, 35–45, doi:10.1124/jpet.109.160382.
[26]  Payton-Stewart, F.; Khupse, R.S.; Boue, S.M.; Elliott, S.; Zimmermann, M.C.; Skripnikova, E.V.; Ashe, H.; Tilghman, S.L.; Beckman, B.S.; Cleveland, T.E.; et al. Glyceollin I enantiomers distinctly regulate ER-mediated gene expression. Steroids 2010, 75, 870–878, doi:10.1016/j.steroids.2010.05.007.
[27]  Kim, H.J.; Cha, B.Y.; Choi, B.; Lim, J.S.; Woo, J.T.; Kim, J.S. Glyceollins inhibit platelet-derived growth factor-mediated human arterial smooth muscle cell proliferation and migration. Br. J. Nutr. 2011, 107, 1–12.
[28]  Payton-Stewart, F.; Schoene, N.W.; Kim, Y.S.; Burow, M.E.; Cleveland, T.E.; Boue, S.M.; Wang, T.T. Molecular effects of soy phytoalexin glyceollins in human prostate cancer cells LNCaP. Mol. Carcinog. 2009, 48, 862–871, doi:10.1002/mc.20532.
[29]  Simon, J.A.; Bedalov, A. Opinion—Yeast as a model system for anticancer drug discovery. Nat. Rev. Cancer 2004, 4, 481–488, doi:10.1038/nrc1372.
[30]  Kaeberlein, M. Resveratrol and rapamycin: Are they anti-aging drugs? Bioessays 2010, 32, 96–99, doi:10.1002/bies.200900171.
[31]  Eisenberg, T.; Knauer, H.; Schauer, A.; Buttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009, 11, 1305–1314, doi:10.1038/ncb1975.
[32]  Ingram, D.K.; Zhu, M.; Mamczarz, J.; Zou, S.; Lane, M.A.; Roth, G.S.; deCabo, R. Calorie restriction mimetics: An emerging research field. Aging Cell 2006, 5, 97–108, doi:10.1111/j.1474-9726.2006.00202.x.
[33]  Goldberg, A.A.; Richard, V.R.; Kyryakov, P.; Bourque, S.D.; Beach, A.; Burstein, M.T.; Glebov, A.; Koupaki, O.; Boukh-Viner, T.; Gregg, C.; et al. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging (Albany NY) 2010, 2, 393–414.
[34]  Goldberg, A.A.; Kyryakov, P.; Bourque, S.D.; Titorenko, V.I. Xenohormetic, hormetic and cytostatic selective forces driving longevity at the ecosystemic level. Aging (Albany NY) 2010, 2, 361–370.
[35]  Calabrese, E.J.; Baldwin, L.A. Hormesis: The dose-response revolution. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 175–197, doi:10.1146/annurev.pharmtox.43.100901.140223.
[36]  Wu, Z.; Song, L.; Liu, S.Q.; Huang, D. Independent and additive effects of glutamic acid and methionine on yeast longevity. PLoS One 2013, 8, e79319.
[37]  Wu, Z.; Liu, S.Q.; Huang, D. Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae. PLoS One 2013, 8, e64448.
[38]  Toussaint, M.; Conconi, A. High-throughput and sensitive assay tomeasure yeast cell growth: A bench protocol for testing genotoxic agents. Nat. Protoc. 2006, 1, 1922–1928, doi:10.1038/nprot.2006.304.
[39]  Murakami, C.J.; Burtner, C.R.; Kennedy, B.K.; Kaeberlein, M. A method for high throughput quantitative analysis of yeast chronological life span. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 113–121, doi:10.1093/gerona/63.2.113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133