The present paper considers the friction performance of Al-10%SiCp reinforced metal matrix composites against steel for varying tribological test parameters. The composite is prepared by stir-casting process using aluminium alloy LM6 being mixed with 10% silicon carbide by weight. The tribological tests are performed by varying applied load, sliding speed, and time. The friction performance is studied using plate-on-roller configuration in a multitribotester and optimized using Taguchi L27 orthogonal array. Analysis of variance (ANOVA) is performed to observe the significance of test parameters and their interactions on friction performance. It is observed that normal load and the interaction between normal load and speed influence the friction behaviour, significantly. The wear tracks are analyzed with the help of scanning electron microscopy. 1. Introduction Particle reinforced composites are recognized as a light weight material having enhanced mechanical and tribological properties than the constituent materials. The MMC (metal matrix composite) materials attain the toughness of the alloy matrix and hardness, stiffness, and strength of the reinforcement. Researchers [1–3] have used different types of aluminium alloys for synthesis of the composites. Also, different types of silicon carbide reinforcement such as particle, whisker, and fibre reinforcement are used by researchers. Mainly reinforcement volume fraction is varied by most researchers. Ahlatci et al. [4] carried out tribological experiments by mixing reinforcement in the volume fraction range from 0 to 60%. But most researchers [5–7] used volume fraction ranging from 1 to 20% for their study. The composites, synthesised by mixing the base metal and reinforcement, have greater strength, improved stiffness, improved corrosion resistance, and improved wear resistance. However, the relatively poor seizure resistance of aluminium alloy has restricted to uses in some engineering applications. These materials are good alternative to the traditional materials due to the improved properties. The increasing use of composite materials in the automobile and aeronautics fields is due to good friction and wear properties. In aeronautics, it is used for manufacturing of rotor blades due to increased creep resistance. The aluminium composites exhibit lower friction coefficient than their base alloys [8, 9]. Iwai et al. [6] conducted the study with 2024 Al alloy reinforced with 10% vol SiC. The friction study showed that initially the friction coefficient value is around 0.6 for both 2024?Al alloy and
References
[1]
M. Bai, Q. Xue, X. Wang, Y. Wan, and W. Liu, “Wear mechanism of SiC whisker-reinforced 2024 aluminum alloy matrix composites in oscillating sliding wear tests,” Wear, vol. 185, no. 1-2, pp. 197–202, 1995.
[2]
A. Onat, “Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium-copper alloy matrix composites produced by direct squeeze casting method,” Journal of Alloys and Compounds, vol. 489, no. 1, pp. 119–124, 2010.
[3]
R. Chen, A. Iwabuchi, and T. Shimizu, “The effect of a T6 heat treatment on the fretting wear of a SiC particle-reinforced A356 aluminum alloy matrix composite,” Wear, vol. 238, no. 2, pp. 110–119, 2000.
[4]
H. Ahlatci, E. Candan, and H. Cimenoglu, “Abrasive wear behavior and mechanical properties of Al-Si/SiC composites,” Wear, vol. 257, no. 5-6, pp. 625–632, 2004.
[5]
R. Chen, A. Iwabuchi, T. Shimizu, H. S. Shin, and H. Mifune, “The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites,” Wear, vol. 213, no. 1-2, pp. 175–184, 1997.
[6]
Y. Iwai, H. Yoneda, and T. Honda, “Sliding wear behavior of SiC whisker-reinforced aluminum composite,” Wear, vol. 181–183, no. 2, pp. 594–602, 1995.
[7]
A. M. Hassan, A. Alrashdan, M. T. Hayajneh, and A. T. Mayyas, “Wear behavior of Al-Mg-Cu-based composites containing SiC particles,” Tribology International, vol. 42, no. 8, pp. 1230–1238, 2009.
[8]
F. Akhlaghi and A. Zare-Bidaki, “Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced by in situ powder metallurgy method,” Wear, vol. 266, no. 1-2, pp. 37–45, 2009.
[9]
A. Martín, M. A. Martínez, and J. Llorca, “Wear of SiC-reinforced Al-matrix composites in the temperature range ,” Wear, vol. 193, no. 2, pp. 169–179, 1996.
[10]
M. Bai, Q. Xue, and Q. Ge, “Wear of 2024 Al-Mo-SiC composites under lubrication,” Wear, vol. 195, no. 1-2, pp. 100–105, 1996.
[11]
V. S. R. Murthy, K. Srikanth, and C. B. Raju, “Abrasive wear behaviour of SiC whisker-reinforced silicate matrix composites,” Wear, vol. 223, no. 1-2, pp. 79–92, 1998.
[12]
J. Rodríguez, P. Poza, M. A. Garrido, and A. Rico, “Dry sliding wear behaviour of aluminium-lithium alloys reinforced with SiC particles,” Wear, vol. 262, no. 3-4, pp. 292–300, 2007.
[13]
T. Ma, H. Yamaura, D. A. Koss, and R. C. Voigt, “Dry sliding wear behavior of cast SiC-reinforced Al MMCs,” Materials Science and Engineering A, vol. 360, no. 1-2, pp. 116–125, 2003.
[14]
Y. Yalcin and H. Akbulut, “Dry wear properties of A356-SiC particle reinforced MMCs produced by two melting routes,” Materials and Design, vol. 27, no. 10, pp. 872–881, 2006.
[15]
H. Tang, X. Zeng, X. Xiong, L. Li, and J. Zou, “Mechanical and tribological properties of short-fiber-reinforced SiC composites,” Tribology International, vol. 42, no. 6, pp. 823–827, 2009.
[16]
G. Taguchi, Introduction to Quality Engineering, Asian Productivity Organization, 1990.
[17]
P. J. Ross, Taguchi Technique for Quality Engineering, McGraw-Hill, New York, NY, USA, 2nd edition, 1996.
[18]
R. K. Roy, A Primer on Taguchi Method, Van Nostraid Reinhold, New York, NY, USA, 1990.
[19]
R. A. Fisher, Design of Experiments, Oliver & Boyd, Edinburgh, UK, 1951.
[20]
Minitab User Manual (Release 13.2), Making Data Analysis Easier, MINITAB, State College, Pa, USA, 2001.