全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Friction Performance Optimization of Chemically Deposited Ni-P-W Coating Using Taguchi Method

DOI: 10.5402/2013/136740

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study considers the friction behavior of chemically deposited Ni-P-W coatings and optimization of the coating process parameters for minimum friction using Taguchi method. The study is carried out by varying the combination of four coating process parameters, namely, concentration of nickel source, concentration of reducing agent, concentration of tungsten source, and annealing temperature. The friction tests are conducted in a plate-on-roller configuration by keeping the coated sample fixed against a rotating steel roller. The optimum combination of process parameters for minimum friction coefficient is obtained from the analysis of S/N ratio. Furthermore, a statistical analysis of variance reveals that the concentration of nickel source solution has the most significant influence in controlling friction characteristics of Ni-P-W coating. The surface morphology and composition of coatings are also studied with the help of scanning electron microscopy, energy dispersed x-ray analysis, and x-ray diffraction analysis. 1. Introduction Coating process is the most efficient technique to improve the performance capabilities of metal surfaces, by allowing the mechanical properties of the substrate material to be maintained while protecting them against wear, friction, or corrosion by a protective coating. The electroless plating/chemical deposition was first adopted by Brenner and Riddell [1, 2]. It is a method of plating metallic substrates with nickel or cobalt alloys without the application of any external current source. In general, this type of plating is characterized by the selective reduction of metal ions only at the surface of a catalytic substrate immersed into an aqueous solution of metal ions, with continued deposition on the substrate through the catalytic action of the deposit itself. Since the deposit catalyzes the reduction reaction, the term autocatalytic is also used to describe the plating process. In this process the substrate develops a potential when it is dipped in electroless solution called bath that contains a source of metallic ions, reducing agent, complexing agent, stabilizer, and other components [3]. Due to the developed potential both positive and negative ions are attracted towards the substrate surface and release their energy through charge transfer process, and this property gives it an extra advantage over the conventional electroplating processes that depend on an external source of direct current in order to reduce nickel ions in the electrolyte to nickel metal on the substrate. Another advantage is that

References

[1]  A. Brenner and G. E. Riddell, “Nickel coating on steel by chemical reduction,” Journal of Research of the National Bureau of Standards, vol. 37, no. 1, pp. 31–34, 1946.
[2]  A. Brenner and G. E. Riddell, “Nickel plating on steel by chemical reduction,” Proceedings of the American Electroplater's Society, vol. 33, p. 16, 1946.
[3]  G. O. Mallory and J. B. Hadju, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Fla, USA, 1991.
[4]  P. Sahoo and S. K. Das, “Tribology of electroless nickel coatings - A review,” Materials and Design, vol. 32, no. 4, pp. 1760–1775, 2011.
[5]  R. Parkinson, “Properties and applications of electroless nickel deposits,” Technical Series No. 10081, Nickel Development Institute, 1997.
[6]  R. C. Agarwala and V. Agarwala, “Electroless alloy/composite coatings: A review,” Sadhana - Academy Proceedings in Engineering Sciences, vol. 28, no. 3-4, pp. 475–493, 2003.
[7]  O. Berkh, S. Eskin, and J. Zahavi, “Properties of electrodeposited NiP-SiC composite coatings,” Metal Finishing, vol. 94, no. 3, pp. 35–40, 1996.
[8]  D. Barker, “Electroless deposition of metals,” Transactions of the Institute of Metal Finishing, vol. 71, no. 3, pp. 121–124, 1993.
[9]  D. Baudrand and J. Bengston, “Electroless plating processes. Developing technologies for electroless nickel, palladium, and gold,” Metal Finishing, vol. 93, no. 9, pp. 55–57, 1995.
[10]  E. Vafaei-Makhsoos, E. L. Thomas, and L. E. Toth, “Electron microscopy of crystalline and amorphous Ni-P electrodeposited films: In-situ crystallization of an amorphous solid,” Metallurgical Transactions A, vol. 9, no. 10, pp. 1449–1460, 1978.
[11]  Y. Mori and S. Ohtsuka, Japanese Patent 50, 039, 638, 1975.
[12]  I. Apachitei, J. Duszczyk, L. Katgerman, and P. J. B. Overkamp, “Electroless Ni-P composite coatings: The effect of heat treatment on the microhardness of substrate and coating,” Scripta Materialia, vol. 38, no. 9, pp. 1347–1353, 1998.
[13]  Y. S. Huang, X. T. Zeng, I. Annergren, and F. M. Liu, “Development of electroless NiP-PTFE-SiC composite coating,” Surface and Coatings Technology, vol. 167, no. 2-3, pp. 207–211, 2003.
[14]  G. Straffelini, D. Colombo, and A. Molinari, “Surface durability of electroless Ni-P composite deposits,” Wear, vol. 236, no. 1-2, pp. 179–188, 1999.
[15]  Q. Zhao, Y. Liu, H. Müller-Steinhagen, and G. Liu, “Graded Ni-P-PTFE coatings and their potential applications,” Surface and Coatings Technology, vol. 155, no. 2-3, pp. 279–284, 2002.
[16]  Y. Wu, H. Liu, B. Shen, L. Liu, and W. Hu, “The friction and wear of electroless Ni-P matrix with PTFE and/or SiC particles composite,” Tribology International, vol. 39, no. 6, pp. 553–559, 2006.
[17]  A. Abdel Aal and M. Shehata Aly, “Electroless Ni-Cu-P plating onto open cell stainless steel foam,” Applied Surface Science, vol. 255, no. 13-14, pp. 6652–6655, 2009.
[18]  W. Chen, W. Gao, and Y. He, “A novel electroless plating of Ni-P-TiO2 nano-composite coatings,” Surface and Coatings Technology, vol. 204, no. 15, pp. 2493–2498, 2010.
[19]  Y. J. Hu, T. X. Wang, J. L. Meng, and Q. Y. Rao, “Structure and phase transformation behaviour of electroless Ni-W-P on aluminium alloy,” Surface and Coatings Technology, vol. 201, no. 3-4, pp. 988–992, 2006.
[20]  F. B. Wu, S. K. Tien, J. G. Duh, and J. H. Wang, “Surface characteristics of electroless and sputtered Ni- P-W alloy coatings,” Surface and Coatings Technology, vol. 166, no. 1, pp. 60–66, 2003.
[21]  J. N. Balaraju and K. S. Rajam, “Electroless deposition of Ni-Cu-P, Ni-W-P and Ni-W-Cu-P alloys,” Surface and Coatings Technology, vol. 195, no. 2-3, pp. 154–161, 2005.
[22]  S. K. Tien, J. G. Duh, and Y. I. Chen, “Structure, thermal stability and mechanical properties of electroless Ni-P-W alloy coatings during cycle test,” Surface and Coatings Technology, vol. 177-178, pp. 532–536, 2004.
[23]  J. N. Balaraju, C. Anandan, and K. S. Rajam, “Influence of codeposition of copper on the structure and morphology of electroless Ni-W-P alloys from sulphate- and chloride-based baths,” Surface and Coatings Technology, vol. 200, no. 12-13, pp. 3675–3681, 2006.
[24]  F. Pearlstein, R. F. Weightman, and R. Wick, Metal Finishing, vol. 61, pp. 77–81, 1963.
[25]  M. Palaniappa and S. K. Seshadri, “Friction and wear behavior of electroless Ni-P and Ni-W-P alloy coatings,” Wear, vol. 265, no. 5-6, pp. 735–740, 2008.
[26]  R. K. Roy, A Primer on the Taguchi Method, Society of Manufacturing Engineers, Dearborn, Mich, USA, 1990.
[27]  P. Sahoo, “Wear behaviour of electroless Ni-P coatings and optimization of process parameters using Taguchi method,” Materials and Design, vol. 30, no. 4, pp. 1341–1349, 2009.
[28]  Minitab User Manual Release 13.2, Making Data Analysis Easier, MINITAB: State College, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133