全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Possibilities of Decreasing Power Loss in Large Tilting Pad Thrust Bearings

DOI: 10.5402/2013/732790

Full-Text   Cite this paper   Add to My Lib

Abstract:

Different systems of direct oil supply have been developed in order to facilitate efficient introduction of fresh lubricant to the oil gap and reduction of churning power loss in tilting pad thrust bearings. Up to now there is no documented application of the supply groove in large thrust bearings used in water power plants. The results of modeling lubricant flow in the lubricating groove of a thrust bearing pad will be presented in the paper. CFD software was used to carry out fluid film calculations. Such analysis makes it possible to modify groove geometry and other parameters and to study their influence on bearing performance. According to the results a remarkable decrease in total power loss due to avoiding churning losses can be observed in the bearing. 1. Introduction Basic operation limit for any hydrodynamic bearing is minimum film thickness [1]. This limit, called hydrodynamic limit, is especially important in low-speed bearings, for example, hydrogenerator bearings, in which in most cases sliding speed is less than 25?m/s, and specific loads higher than 2.5?MPa. In the same time quite often temperatures of the sliding surface exceed 100°C. Decreasing bearing temperature causes increasing margin of safety of bearing operation by higher oil viscosity, so at lower temperature, hydrodynamic action is enhanced. Ettles [2] showed that bearing temperature is strongly affected by oil temperature at the inlet to the fluid film and by the runner temperature. Moreover, temperature level in thrust bearings depends on the method of supplying cold oil to the bearing. A series of papers from early 1970s [3–5] indicate that directed lubrication (e.g., spray or groove systems) with evacuated bearing housing is an efficient method of decreasing temperature in high-speed bearings and significant reduction of churning loss. On the other hand for low-speed applications, the authors of the above mentioned papers did not see potential for substantial decrease of bearing temperature. The most common method of lubricating large thrust bearings is flooded lubrication, in which all the bearing elements are immersed in oil contained in the bearing housing. Quite often flooded lubrication is assisted by special direct oil supply systems. In spite of the fact that the use of such systems have become frequent, their actual influence on bearing characteristics is still unknown, at least in the literature known to the authors of this paper such results have not been published. Decrease of friction losses also becomes an important parameter in assessing bearing performance

References

[1]  A. J. Leopard, “Tilting pad bearings: limits of operation,” Lubrication Engineering, vol. 32, no. 12, pp. 637–644, 1976.
[2]  C. M. Ettles, “Hot oil carry-over in thrust bearings,” Proceedings of the Institution of Mechanical Engineering, vol. 184, no. 12, part 3L, pp. 75–81, 1970.
[3]  F. A. Martin, “Tilting pad thrust bearings: rapid design aids,” Institution of Mechanical Engineers, Tribology Convention, no. 12, paper 16, pp. 120–138, 1970.
[4]  M. K. Bielec and A. J. Leopard :, “Directed lubrication for tilting-pad thrust bearings,” Institution of Mechanical Engineers, Tribology Convention, vol. 184, no. 12, paper 13, pp. 93–102, 1970.
[5]  N. H. New, “experimental comparison of flooded, directed, and inlet orifice type of lubrication for a tilting pad thrust bearing,” Transactions of the ASME, Journal of Lubrication Technology, vol. 96, no. 1, pp. 22–27, 1974.
[6]  G. Rotta, “Modeling of the gap between thrust bearing pads,” Tribologia, vol. 35, no. 4, pp. 133–141, 2004 (Polish).
[7]  G. Rotta and M. Wasilczuk, “CFD analysis of the lubricant flow in the supply groove of a hydrodynamic thrust bearing pad,” in Proceedings of the ASME/STLE International Joint Tribology Conference, (IJTC '07), paper no. IJTC2007-44304, pp. 307–309, San Diego, Calif, USA, October 2007.
[8]  M. Wasilczuk and G. Rotta, “Modeling lubricant flow between thrust-bearing pads,” Tribology International, vol. 41, no. 9-10, pp. 908–913, 2008.
[9]  G. Rotta, M. Wasilczuk, and L. Dabrowski, “Some aspects of using CFD in analysis of hydrodynamic lubrication,” in Proceedings of 13th Nordic Tribology Symposium Nordtrib, paper no. NT2008-127-31, 2008.
[10]  G. Rotta, The influence of the arrangement of the gap between pads on the performance of a thrust bearing [Ph.D. thesis], Gdansk University of Technology, 2009.
[11]  L. Dabrowski and M. Wasilczuk, “Evaluation of water turbine hydrodynamic thrust bearing performance on the basis of thermoelastohydrodynamic calculations and operational data,” Proceedings of the Institution of Mechanical Engineers, Part J, vol. 218, no. 5, pp. 413–421, 2004.
[12]  ANSYS 11.0 documentation.
[13]  J. H. Vohr, “Prediction of the operating temperature of thrust bearings,” Journal of Lubrication Technology, vol. 103, no. 1, pp. 97–106, 1981.
[14]  A. M. Mikula and R. S. Gregory, “Comparison of tilting pad thrust bearing lubricant supply methods,” Journal of Lubrication Technology, vol. 105, no. 1, pp. 39–47, 1983.
[15]  N. H. New, “Comparison of flooded and directed lubrication tilting pad thrust bearings,” Tribology International, vol. 12, no. 6, pp. 251–254, 1979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133