全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Performance of Magnetic-Fluid-Based Squeeze Film between Longitudinally Rough Elliptical Plates

DOI: 10.1155/2013/482604

Full-Text   Cite this paper   Add to My Lib

Abstract:

An attempt has been made to analyze the performance of a magnetic fluid-based-squeeze film between longitudinally rough elliptical plates. A magnetic fluid is used as a lubricant while axially symmetric flow of the magnetic fluid between the elliptical plates is taken into consideration under an oblique magnetic field. Bearing surfaces are assumed to be longitudinally rough. The roughness of the bearing surface is characterized by stochastic random variable with nonzero mean, variance, and skewness. The associated averaged Reynolds’ equation is solved with appropriate boundary conditions in dimensionless form to obtain the pressure distribution leading to the calculation of the load-carrying capacity. The results are presented graphically. It is clearly seen that the magnetic fluid lubricant improves the performance of the bearing system. It is interesting to note that the increased load carrying capacity due to magnetic fluid lubricant gets considerably increased due to the combined effect of standard deviation and negatively skewed roughness. This performance is further enhanced especially when negative variance is involved. This paper makes it clear that the aspect ratio plays a prominent role in improving the performance of the bearing system. Besides, the bearing can support a load even when there is no flow. 1. Introduction The transient load carrying capacity of a fluid film between two surfaces having a relative normal velocity plays a crucial role in frictional devices such as clutch plates in automatic transmissions. Archibald [1] studied the behaviour of squeeze film between various geometrical configurations. Subsequently, Wu [2, 3] investigated the squeeze film performance mainly for two types of geometries, namely, annular and rectangular when one of the surfaces was porous faced. Prakash and Vij [4] discussed the load carrying capacity and time height relations for squeeze film performance between porous plates. In that study various geometries such as circular, annular, elliptical, rectangular, conical, and truncated conical were considered. Besides, a comparison was made between the squeeze film performance of various geometries of equivalent surface area and it was established that the circular geometry registered the highest transient load carrying capacity, other parameters remaining same. The above studies dealt with conventional lubricant. Verma [5] considered the application of magnetic fluid as a lubricant. The magnetic fluid consisted of fine magnetic grains coated with a surfactant and dispersed in a non-conducting magnetically

References

[1]  F. R. Archibald, “Load capacity and time relations for squeeze films,” Transactions of the ASME, vol. D78, pp. 231–245, 1956.
[2]  H. Wu, “Squeeze film behaviour for porous annular disks,” Transactions of ASME, vol. F92, pp. 593–596, 1970.
[3]  H. Wu, “An analysis of the squeeze film between porous rectangular plates,” Transactions of ASME, vol. F94, pp. 64–68, 1972.
[4]  J. Prakash and S. Vij, “Load capacity and time-height relations for squeeze films between porous plates,” Wear, vol. 24, no. 3, pp. 309–322, 1973.
[5]  P. D. S. Verma, “Magnetic fluid based squeeze film,” International Journal of Engineering Science, vol. 24, no. 3, pp. 395–401, 1986.
[6]  M. V. Bhat and G. M. Deberi, “Squeeze film behaviour in porous annular discs lubricated with magnetic fluid,” Wear, vol. 151, no. 1, pp. 123–128, 1991.
[7]  M. V. Bhat and G. M. Deheri, “Magnetic fluid based squeeze film between two curved circular plates,” Bulletin of Calcutta Mathematical Society, vol. 85, pp. 521–524, 1992.
[8]  R. M. Patel and G. M. Deheri, “Magnetic fluid based squeeze film between porous conical plates,” Industrial Lubrication and Tribology, vol. 59, no. 3, pp. 143–147, 2007.
[9]  M. G. Davies, “The generation of pressure between rough fluid lubricated, moving, deformable surfaces,” Lubrication Engineering, vol. 19, p. 246, 1963.
[10]  R. A. Burton, “Effect of two dimensional sinusoidal roughness on the load support characteristics of a lubricant film,” Journal of Basic Engineering, vol. 85, pp. 258–264, 1963.
[11]  A. G. M. Michell, Lubrication, Its Principle and Practice, Blackie, London, UK, 1950.
[12]  K. C. Tonder, “Surface distributed waviness and roughness,” in Proceedings of the 1st World Conference in Industrial Tribology, vol. A3, pp. 1–8, New Delhi, India, 1972.
[13]  S. T. Tzeng and E. Saibel, “Surface roughness effect on slider bearing lubrication,” Journal of Lubrication Technology, vol. 10, pp. 334–338, 1967.
[14]  H. Christensen and K. C. Tonder, Tribology of Rough Surfaces: Stochastic Models of Hydrodynamic Lubrication, SINTEF Report, no. 10/69–18, 1969.
[15]  H. Christensen and K. C. Tonder, Tribology of Rough Surfaces: Parametric Study and Comparison of Lubrication Models, SINTEF Report, no. 22/69–18, 1969.
[16]  H. Christensen and K. C. Tonder, “Hydrodynamic lubrication of rough bearing surfaces of finite width,” Journal of Lubrication Technology, vol. 93, no. 3, 1971.
[17]  L. L. Ting, “Engagement behaviour of lubricated porous annular disks part I: squeeze film phase, surface roughness and elastic deformation effects,” Wear, vol. 34, no. 2, pp. 159–182, 1975.
[18]  J. Prakash and K. Tiwari, “Lubrication of a porous bearing with surface corrugations,” Journal of Lubrication Technology, vol. 104, pp. 127–134, 1982.
[19]  J. Prakash and K. Tiwari, “Roughness effects in porous circular squeeze—plates with arbitrary wall thickness,” Journal of Lubrication Technology, vol. 105, no. 1, pp. 90–95, 1983.
[20]  B. L. Prajapati, “Behaviour of squeeze film between rotating porous circular plates: surface roughness and elastic deformation effects,” Pure and Applied Mathematical Sciences, vol. 33, no. 1/2, pp. 27–36, 1991.
[21]  B. L. Prajapati, “Squeeze film behaviour between rotating porous circular plates with a concentric circular pocket: surface roughness and elastic deformation effects,” Wear, vol. 152, no. 2, pp. 301–307, 1992.
[22]  S. K. Guha, “Analysis of dynamic characteristics of hydrodynamic journal bearings with isotropic roughness effects,” Wear, vol. 167, no. 2, pp. 173–179, 1993.
[23]  J. L. Gupta and G. M. Deheri, “Effect of roughness on the behavior of squeeze film in a spherical bearing,” Tribology Transactions, vol. 39, no. 1, pp. 99–102, 1996.
[24]  P. I. Andharia, J. L. Gupta, and G. M. Deheri, “Effect of longitudinal surface roughness on hydrodynamic lubrication of slider bearings,” in Proceedings of the 10th International Conference on Surface Modification Technologies, pp. 872–880, The Institute of Materials, 1997.
[25]  P. I. Andharia and G. Deheri, “Longitudinal roughness effect on magnetic fluid-based squeeze film between conical plates,” Industrial Lubrication and Tribology, vol. 62, no. 5, pp. 285–291, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133