全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Addition of Graphene to Polymer Coatings for Improved Weathering

DOI: 10.1155/2013/514617

Full-Text   Cite this paper   Add to My Lib

Abstract:

Graphene nanoflakes in different weight percentages were added to polyurethane top coatings, and the coatings were evaluated relative to exposure to two different experimental conditions: one a QUV accelerated weathering cabinet, while the other a corrosion test carried out in a salt spray chamber. After the exposure tests, the surface morphology and chemical structure of the coatings were investigated via atomic force microscopy (AFM) and Fourier transform infrared (FTIR) imaging. Our results show that the addition of graphene does in fact improve the resistance of the coatings against ultraviolet (UV) degradation and corrosion. It is believed that this process will improve the properties of the polyurethane top coating used in many industries against environmental factors. 1. Introduction Polyurethane (PU) is one of the main coatings used in the aircraft and many other industries. PU has important applications in coatings because of its outstanding properties, such as high tensile strength, chemical and weathering resistance, good processability, and mechanical properties [1–3]. However, since PU is an organic coating and subject to deterioration, its degradation has been investigated for years [1, 4–10]. The three critical factors for environmental degradation are ultraviolet (UV) light, water, and oxygen [8, 10–19]. The polymeric material generally degrades when it is exposed to these environmental influences. UV irradiation irreversibly changes the chemical structure of films and thus affects both the physical properties—loss of gloss, yellowing, blistering, cracking, and so forth—and the mechanical properties—loss of tensile strength, brittleness, changes in glass transition temperature ( ), and so forth [1]. In the coating degradation theory [4, 20], the presence of oxygen generates hydroperoxides, which in turn accelerates photodegradation of the polyurethane. The presence of water molecules is also another factor accelerating this process. Unsaturated bonds of polymers can be activated first under UV exposure and then react with oxygen to generate carbonyl or peroxide groups. This results in the formation of carbonyl, peroxide, ketone, or aldehyde groups near the coating surface. Weathering degradation of PU can be reduced with the help of novel approaches. An assortment of approaches can be undertaken to protect coatings against weathering conditions and radiation failures [7, 21–26]. To reduce UV degradation, UV screeners [27] are inserted into the bulk polymer. In general, these additives absorb UV light by themselves and minimize the amount

References

[1]  H. Aglan, M. Calhoun, and L. Allie, “Effect of UV and hygrothermal aging on the mechanical performance of polyurethane elastomers,” Journal of Applied Polymer Science, vol. 108, no. 1, pp. 558–564, 2008.
[2]  G. Oertel and L. Abele, Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties, Hanser, St. Louis, Mo, USA, 2nd edition, 1994.
[3]  S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, “Biomedical applications of polymer-composite materials: a review,” Composites Science and Technology, vol. 61, no. 9, pp. 1189–1224, 2001.
[4]  X. F. Yang, D. E. Tallman, G. P. Bierwagen, S. G. Croll, and S. Rohlik, “Blistering and degradation of polyurethane coatings under different accelerated weathering tests,” Polymer Degradation and Stability, vol. 77, no. 1, pp. 103–109, 2002.
[5]  X. F. Yang, C. Vang, D. E. Tallman, G. P. Bierwagen, S. G. Croll, and S. Rohlik, “Weathering degradation of a polyurethane coating,” Polymer Degradation and Stability, vol. 74, no. 2, pp. 341–351, 2001.
[6]  A. Ludwick, H. Aglan, M. O. Abdalla, and M. Calhoun, “Degradation behavior of an ultraviolet and hygrothermally aged polyurethane elastomer: Fourier transform infrared and differential scanning calorimetry studies,” Journal of Applied Polymer Science, vol. 110, no. 2, pp. 712–718, 2008.
[7]  C. Merlatti, F. X. Perrin, E. Aragon, and A. Margaillan, “Natural and artificial weathering characteristics of stabilized acrylic-urethane paints,” Polymer Degradation and Stability, vol. 93, no. 5, pp. 896–903, 2008.
[8]  S. P. Pappas, “Weathering of coatings—formulation and evaluation,” Progress in Organic Coatings, vol. 17, no. 2, pp. 107–114, 1989.
[9]  B. M. D. Fernando, X. Shi, and S. G. Croll, “Molecular relaxation phenomena during accelerated weathering of a polyurethane coating,” Journal of Coatings Technology Research, vol. 5, no. 1, pp. 1–9, 2008.
[10]  D. R. Bauer, “Degradation of organic coatings. I. Hydrolysis of melamine formaldehyde/acrylic copolymer films,” Journal of Applied Polymer Science, vol. 27, no. 10, pp. 3651–3662, 1982.
[11]  W. Schnabel, Polymer Degradation, Principles and Practical Applications, Macmillan, New York, NY, USA, 1981.
[12]  R. R. Blakey, “Evaluation of paint durability—natural and accelerated,” Progress in Organic Coatings, vol. 13, no. 5, pp. 279–296, 1985.
[13]  G. Z. Xiao and M. E. R. Shanahan, “Water absorption and desorption in an epoxy resin with degradation,” Journal of Polymer Science, Part B, vol. 35, no. 16, pp. 2659–2670, 1997.
[14]  A. M. Morrow, N. S. Allen, and M. Edge, “Photodegradation of water-based acrylic coatings containing silica,” Journal of Coatings Technology, vol. 70, no. 880, pp. 65–72, 1998.
[15]  D. R. Bauer, “Network formation and degradation in urethane and melamine-formaldehyde crosslinked coatings,” Polymeric Materials, vol. 56, pp. 91–95, 1987.
[16]  D. R. Bauer, “Melamine/formaldehyde crosslinkers: characterization, network formation and crosslink degradation,” Progress in Organic Coatings, vol. 14, no. 3, pp. 193–218, 1986.
[17]  D. R. Bauer, R. A. Dickie, and J. L. Koenig, “Cure and photodegradation of two-package acrylic/urethane coatings,” Industrial and Engineering Chemistry Product Research and Development, vol. 25, no. 2, pp. 289–296, 1986.
[18]  J. L. Gerlock, H. Van Oene, and D. R. Bauer, “Nitroxide kinetics during photodegradation of acrylic/melamine coatings,” European Polymer Journal, vol. 19, no. 1, pp. 11–18, 1983.
[19]  D. R. Lefebvre, K. M. Takahashi, A. J. Muller, and V. R. Raju, “Degradation of epoxy coatings in humid environments: the critical relative humidity for adhesion loss,” Journal of Adhesion Science and Technology, vol. 5, no. 3, pp. 201–227, 1991.
[20]  B. G. R?nby and J. F. Rabek, Photodegradation, Photo-Oxidation, and Photostabilization of Polymers: principles and applications, John Wiley & Sons, New york, NY, USA, 1975.
[21]  S. Zhou, L. Wu, W. Shen, and G. Gu, “Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings,” Journal of Materials Science, vol. 39, no. 5, pp. 1593–1600, 2004.
[22]  C. Decker, F. Masson, and R. Schwalm, “Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings,” Polymer Degradation and Stability, vol. 83, no. 2, pp. 309–320, 2004.
[23]  B. H. Lee and H. J. Kim, “Influence of isocyanate type of acrylated urethane oligomer and of additives on weathering of UV-cured films,” Polymer Degradation and Stability, vol. 91, no. 5, pp. 1025–1035, 2006.
[24]  M. Sangermano, G. Malucelli, E. Amerio, A. Priola, E. Billi, and G. Rizza, “Photopolymerization of epoxy coatings containing silica nanoparticles,” Progress in Organic Coatings, vol. 54, no. 2, pp. 134–138, 2005.
[25]  S. M. Mirabedini, M. Mohseni, S. PazokiFard, and M. Esfandeh, “Effect of TiO2 on the mechanical and adhesion properties of RTV silicone elastomer coatings,” Colloids and Surfaces A, vol. 317, no. 1-3, pp. 80–86, 2008.
[26]  C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” Journal of Materials Chemistry, vol. 13, no. 3, pp. 526–530, 2003.
[27]  A. Ammala, A. J. Hill, P. Meakin, S. J. Pas, and T. W. Turney, “Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers,” Journal of Nanoparticle Research, vol. 4, no. 1-2, pp. 167–174, 2002.
[28]  M. M. Jalili and S. Moradian, “Deterministic performance parameters for an automotive polyurethane clearcoat loaded with hydrophilic or hydrophobic nano-silica,” Progress in Organic Coatings, vol. 66, no. 4, pp. 359–366, 2009.
[29]  C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon, vol. 48, no. 8, pp. 2127–2150, 2010.
[30]  N. S. Allen, M. Edge, A. Ortega et al., “Degradation and stabilisation of polymers and coatings: nano versus pigmentary titania particles,” Polymer Degradation and Stability, vol. 85, no. 3, pp. 927–946, 2004.
[31]  S. M. Mirabedini, M. Sabzi, J. Zohuriaan-Mehr, M. Atai, and M. Behzadnasab, “Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles,” Applied Surface Science, vol. 257, no. 9, pp. 4196–4203, 2011.
[32]  S. K. Dhoke, T. J. M. Sinha, and A. S. Khanna, “Effect of nano-Al2O3 particles on the corrosion behavior of alkyd based waterborne coatings,” Journal of Coatings Technology Research, vol. 6, no. 3, pp. 353–368, 2009.
[33]  R. Asmatulu, M. Ceylan, and N. Nuraje, “Study of superhydrophobic electrospun nanocomposite fibers for energy systems,” Langmuir, vol. 27, no. 2, pp. 504–507, 2011.
[34]  H. Kim and M. W. Urban, “Molecular level chain scission mechanisms of epoxy and urethane polymeric films exposed to UV/H2O. Multidimensional spectroscopic studies,” Langmuir, vol. 16, no. 12, pp. 5382–5390, 2000.
[35]  R. L. Feller, Accelerated Aging: Photochemical and Thermal Aspects, The J. Paul Getty Trust, Los Angeles, Calif, USA, 1994.
[36]  Z. W. Wicks Jr., F. N. Jones, and S. P. Pappas, Organic Coatings: Science and Technology, John Wiley & Sons., 2nd edition, 1994.
[37]  C. G. Overberger and G. Menges, “Fabrication to die design,” in Encyclopedia of Polymer Science and Engineering in Composites, H. F. Mark, Ed., vol. 4, John Wiley & Sons, New York, NY, USA, 1994.
[38]  J. Lemaire, R. Arnaud, and J. L. Gardette, “The role of hydroperoxides in photooxidation of polyolefins, polyamides and polyurethane elastomers,” Pure and Applied Chemistry, vol. 55, no. 10, pp. 1603–1614, 1983.
[39]  R. Asmatulu, G. A. Mahmud, C. Hille, and H. E. Misak, “Effects of UV degradation on surface hydrophobicity, crack, and thickness of MWCNT-based nanocomposite coatings,” Progress in Organic Coatings, vol. 72, no. 3, pp. 553–561, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133