Two new macrocyclic hydrazone Schiff bases were synthesized by reaction of succindihydrazide and adipdihydrazide with acetylacetone. Hydrazones have been characterized by elemental analyses and IR, mass, 1H?NMR, and 13C?NMR spectral data. Hydrazones have been studied by liquid-liquid extraction towards the s-metal ions (Li+, Na+, and K+) and d-metal ions (Cu2+ and Cr3+) from aqueous phase to organic phase. The effect of chloroform and dichloromethane as organic solvents over the metal chlorides extraction was investigated at 25 ± 0.1°C by using flame atomic absorption. We found differences between the two solvents in extraction selectivity. 1. Introduction Hydrazones are special class of compounds in the Schiff bases family. They are characterized by the presence of the following (1) Hydrazone Schiff bases of acyl, aroyl, and heteroaroyl compounds have an addition donor sites like C=O. The additional donor sites make them more flexible and versatile. This versatility has made hydrazones good polydentate chelating agents that can form a variety of complexes with various transition and inner transition metals and have attracted the attention of many researchers [1]. A wide varieties of hydrazones and their metal complexes have been studied because of their important properties which can be used in different applications, such as, extraction of some metal ions [2], microdetermination of metal ions [2], determination of titanium in bauxite, Portland cement, amphibolites granites [3], and different biological activities, such as antimicrobial [2, 4–7], antifungal [8, 9], antitumor [10, 11], and insecticides [12]. For these applications, we are extending this field of compounds for synthesising novel macrocyclic hydrazones. Five dissymmetric tridentate Schiff base ligands containing a mixed donor set of ONN and ONO were prepared by the reaction of benzohydrazide with the appropriate salicylaldehyde and pyridine-2-carbaldehyde and characterized by FT-IR, 1H NMR, and 13C NMR [13]. Inoue et al. [14] reported the synthesis and spectroscopic characterization of complexes of Ni2+, Cu2+, Zn2+, and Cd2+ with hydrazones Schiff bases derived from 6-amino-5-formyl-1,3-dimethyluracil, nicotinic and isonicotinic acids hydrazides. Avaji et al. [15] reported the synthesis and characterization of a macrocyclic hydrazone Schiff bases prepared by condensation of 1,4-dicarbonyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol. Emara et al. reported [16–18] formation of binuclear complexes for the ligands derived from 4,6-diacetylresorcinol, where the ligands were prepared
References
[1]
J. P. Cornelissen, J. H. Van Diemen, L. R. Groeneveld, J. G. Haasnoot, A. L. Spek, and J. Reedijk, “Synthesis and properties of isostructural transition-metal (copper, nickel, cobalt, and iron) compounds with 7, ,8, -tetracyanoquinodimethanide(1-) in an unusual monodentate coordination mode. Crystal structure of bis(3,5-bis(pyridin-2-yl)-4-amino-1,2,4-triazole)bis(7, ,8, - tetracyanoquinodimethanido)copper(II),” Inorganic Chemistry, vol. 31, no. 2, pp. 198–202, 1992.
[2]
N. Nawar, M. A. Khattab, and N. M. Hosny, “Some metal(II) complexes of o-aminoacetophenone benzoylhydrazone (AABH): their preparation, characterization and antimicrobial activity,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 29, no. 8, pp. 1365–1384, 1999.
[3]
M.-D. Gui, R.-H. Zhang, H. Yan, H.-M. Wang, X.-B. Chen, and S.-J. Zhu, “Synthesis and magnetic and catalytic properties of manganous isonicotinoyl hydrazone complexes,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 28, no. 8, pp. 1381–1391, 1998.
[4]
Z. H. Chohan and A. Rauf, “Some biologically active mixed ligand complexes of Co(II), Cu(II) and Ni(II) with ONO, NNO and SNO donor nicotinoylhydrazine-derived ligands,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 26, no. 4, pp. 591–604, 1996.
[5]
S. K. Agarwal, J. Jain, and S. Chand, “Synthetic and antimicrobial studies of hexacoordinated ternary complexes of Mn(II) and Cu(II),” Asian Journal of Chemistry, vol. 14, no. 1, pp. 489–492, 2002.
[6]
X. Zhu, C. Wang, W. Dong et al., “Synthesis, structure, and biological activities of the O,O′-diethylphosphorohydrazonothionate ligand and complexes with nickel(II), copper(II), and zinc(II),” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 32, no. 3, pp. 475–487, 2002.
[7]
K. A. El-Manakhly, H. A. Bayoumi, M. M. Ezz Eldin, and H. A. Hammad, “Physicochemical and antimicrobial studies of some metal complexes,” Journal of the Indian Chemical Society, vol. 76, no. 2, pp. 63–64, 1999.
[8]
K. P. Deepa, K. K. Aravindakshan, and F. Suhara, “Synthesis, characterization and antifungal studies of metal, complexes of benzoyl- and salicylylhydrazones of N-methylacetoacetanilide,” Asian Journal of Chemistry, vol. 13, no. 2, pp. 513–523, 2001.
[9]
A. K. Panda, D. C. Dash, P. Mishra, and H. Mohanty, “Metallo ligands: part V—homo and bimetallic trinuclear complexes of copper(II), nickel(II) and cobalt(II) with 1,8-di-(2′-hydroxy-phenyl)-4,5-diphenyl-2,3,6,7-tetrazaoctan-1,3,5,7- tetraene,” Indian Journal of Chemistry, vol. 35, no. 10, pp. 848–851, 1996.
[10]
M. F. Iskander, L. El-Sayed, N. M. H. Salem, W. Haase, H. J. Linder, and S. Foro, “Synthesis, characterization and magnetochemical studies of some copper(II) complexes derived from n-salicylidene-n-alkanoylhydrazins: X-Ray crystal and molecular structure of bis [monochloro-(μ-n-salicylidenemyristoylhydrazine) ono(-1)] dicopper(II),” Polyhedron, vol. 23, no. 1, pp. 23–31, 2004.
[11]
C. Li, L. Wang, X. Meng, and H. Zhao, “Synthesis, characterization and antitumor activity of benzaldehyde nitrogen mustard picolinoyl hydrazone complexes,” Transition Metal Chemistry, vol. 24, no. 2, pp. 206–209, 1999.
[12]
G. P. Pokhariyal, B. Lal, and V. K. Rastogi, “Synthesis, spectral and thermal studies of some divalent metal complexes with 8-acetyl-7-hydroxy-4-methyl coumarrin oxime-hdrazone,” Asian Journal of Chemistry, vol. 9, no. 3, pp. 541–543, 1997.
[13]
F. Bouyagui Tamboura, P. Marcel Haba, M. Gaye, A. Salam Sall, A. Hamady Barry, and T. Jouini, “Structural studies of bis-(2,6-diacetylpyridine-bis-(phenylhydrazone)) and X-ray structure of its Y(III), Pr(III), Sm(III) and Er(III) complex,” Polyhedron, vol. 23, no. 7, pp. 1191–1197, 2004.
[14]
Y. Inoue, T. Kanbara, and T. Yamamoto, “Preparation of a new receptor for anions, macrocyclic polythiolactam—structure and high anion-binding ability,” Tetrahedron Letters, vol. 44, no. 28, pp. 5167–5169, 2003.
[15]
P. G. Avaji, C. H. Vinod Kumar, S. A. Patil, K. N. Shivananda, and C. Nagaraju, “Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone,” European Journal of Medicinal Chemistry, vol. 44, no. 9, pp. 3552–3559, 2009.
[16]
A. A. A. Emara, B. A. El-Sayed, and E. S. A. E. Ahmed, “Syntheses, spectroscopic characterization and thermal behavior on novel binuclear transition metal complexes of hydrazones derived from 4,6-diacetylresorcinol and oxalyldihydrazine,” Spectrochimica Acta—Part A, vol. 69, no. 3, pp. 757–769, 2008.
[17]
A. A. A. Emara and A. A. A. Abou-Hussen, “Spectroscopic studies of bimetallic complexes derived from tridentate or tetradentate Schiff bases of some di- and tri-valent transition metals,” Spectrochimica Acta—Part A, vol. 64, no. 4, pp. 1010–1024, 2006.
[18]
H. S. Seleem, A. A. Emara, and M. Shebl, “The relationship between ligand structures and their CoII and NiII complexes: synthesis and characterization of novel dimeric CoII/CoIII complexes of bis(thiosemicarbazone),” Journal of Coordination Chemistry, vol. 58, no. 12, pp. 1003–1019, 2005.
[19]
M. Otomo and I. Nakayama, “Solvent extraction and spectrophotometric determination of palladium(II) with some nitrogen-containing heterocyclic hydrazones in the presence of chloride ions,” Microchemical Journal, vol. 25, no. 1, pp. 75–81, 1980.
[20]
T. Odashima and H. Ishii, “Synthesis and properties of hydrazones from 3- and/or 5-nitro-2-pyridylhydrazine and heterocyclic aldehydes, characterization of their complexes and extraction-spectrophotometric determination of traces of nickel with 2-pyridinecarbaldehyde 3,5-dinitro-2-pyridylhydrazone,” Analytica Chimica Acta, vol. 277, no. 1, pp. 79–88, 1993.
[21]
M. Robert, X. S. Francis, and J. David, Spectrometric Identification of Organic Compounds, John Wiley & Sons, New York, NY, USA, 2005.
[22]
L. Donald, M. Pavia Gary, and S. Lampman, Introduction to Spectroscopy, Thomson Learning, 3rd edition, 2001.
[23]
E. Pretsch, P. Buhlmann, and C. Affolter, Structure Determination of Organic Compounds, Springer, Berlin, Germany, 3rd edition, 2001.
[24]
D. P. Singh, R. Kumar, and J. Singh, “Synthesis and spectroscopic studies of biologically active compounds derived from oxalyldihydrazide and benzil, and their Cr(III), Fe(III) and Mn(III) complexes,” European Journal of Medicinal Chemistry, vol. 44, no. 4, pp. 1731–1736, 2009.
[25]
S. Chandra and A. K. Sharma, “Nickel(II) and copper(II) complexes with Schiff base ligand 2,6-diacetylpyridine bis(carbohydrazone): synthesis and IR, mass, 1H NMR, electronic and EPR spectral studies,” Spectrochimica Acta—Part A, vol. 72, no. 4, pp. 851–857, 2009.
[26]
M. Popovic, “Multinuclear NMR studies of alkali ions in nonaqueous solvents,” Pure and Applied Chemistry, vol. 51, no. 4, pp. 101–110, 1979.
[27]
B. Ziyadano?ullari, G. Topal, S. Erdo?an, C. Hamamci, and H. Ho?goren, “Effect of structural modifications of diaza-18-crown-6 on the extractability and selectivity of univalent metal picrates,” Talanta, vol. 53, no. 5, pp. 1083–1087, 2001.