全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Optics  2013 

Combined Experimental and Monte-Carlo Ray-Tracing Approach for Optimizing Light Extraction in LED COB Modules

DOI: 10.1155/2013/385345

Full-Text   Cite this paper   Add to My Lib

Abstract:

High-power light-emitting diodes (LEDs) for lighting applications require a high-efficient packaging to optimize their performances. Due to its high thermal dissipation potential, the chip-on-board (COB) technology is widely used for developing high-power lighting sources. In order to optimize the optical properties of such sources and to propose high optically efficient encapsulation geometry, ray-tracing simulations have been performed. The impact of the shape and volume of the silicone encapsulation on the light extraction and on the intensity distribution of the module was derived. Then, simulation results were correlated with experimental measurements on blue light-emitting COB sources. It is shown that a nearly hemispherical encapsulation with a minimal volume of 5 to 10?mm3 for a 1 mm2 LED die is the optimal configuration regarding both the light extraction and the intensity distribution. 1. Introduction High-power light-emitting diodes (LEDs) have attracted a lot of interest in the recent years due to their low-power consumption and long lifetime. However, the integration of these light sources for general lighting applications will require high-efficient packaging with low thermal resistance and compact size [1]. Thus, due to its compactness and its high thermal dissipation potential, the chip-on-board (COB) technology is one of the favourite candidates for developing customized and thermal-efficient LEDs [2]. Beyond the thermal efficiency, one of the key performance criteria of a LED light source is its optical efficiency. This efficiency comprises several components [3]. The first one is the “internal quantum efficiency”. It is defined as the ratio between the number of photons emitted from the active region per second and the number of electrons injected into the LED per second. It describes the LED junction performance. In this paper, we focus on the second component of this efficiency: the “light extraction efficiency”. It is defined as the ratio between the number of photons emitted into free space per second and the number of photons emitted from the active region per second. At the die level, this efficiency is limited by the total internal reflexions which appear at the interface between the semiconductor material and the air due to their refractive index mismatch. It may be improved either by structuring the die surface [4, 5] and/or by packaging the die with dome-shaped encapsulants with a high refractive index [6]. At the package level, the extraction is limited by the losses which may occur during light propagation within the

References

[1]  F. M. Steranka, J. Bhat, D. Collins et al., “High power LEDs—technology status and market applications,” Physica Status Solidi A, vol. 194, no. 2, pp. 380–388, 2002.
[2]  P. Hartmann, F. P. Wenzl, C. Sommer et al., “White LEDs and modules in Chip-On-Board technology for general lighting,” Proc. of SPIE, vol. 6337, Article ID 63370I, 2006.
[3]  E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, 2006.
[4]  T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters, vol. 84, no. 6, pp. 855–857, 2004.
[5]  J. H. Lee, J. T. Oh, S. B. Choi, J. G. Woo, S. Y. Lee, and M. B. Lee, “Extraction-efficiency enhancement of InGaN-based vertical LEDs on hemispherically patterned sapphire,” Physica Status Solidi C, vol. 4, no. 7, pp. 2806–2809, 2007.
[6]  C. Nuese, J. Tietjen, J. Gannon, and H. Gossenberger, “Optimization of electroluminescent efficiencies for vapor-grown GaAs1-xPx diodes,” Journal of The Electrochemical Society, vol. 116, no. 2, pp. 248–253, 1969.
[7]  F. W. Mont, J. K. Kim, M. F. Schubert, H. Luo, E. F. Schubert, and R. W. Siegel, “High refractive index nanoparticle-loaded encapsulants for light-emitting diodes,” in Light-Emitting Diodes: Research, Manufacturing, and Applications XI, Procceedings of SPIE, January 2007.
[8]  J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup,” Japanese Journal of Applied Physics, vol. 44, no. 20–23, pp. L649–L651, 2005.
[9]  H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Applied Physics Letters, vol. 86, no. 24, Article ID 243505, pp. 1–3, 2005.
[10]  H. C. Chen, K. J. Chen, C. H. Wang et al., “A novel randomly textured phosphor structure for highly efficient white light-emitting diodes,” Nanoscale Research Letters, vol. 7, article 188, 2012.
[11]  I. Moreno, D. Bermúdez, and M. Avenda?o-Alejo, “Light-emitting diode spherical packages: an equation for the light transmission efficiency,” Applied Optics, vol. 49, no. 1, pp. 12–20, 2010.
[12]  B. Cao, S. Yu, H. Zheng, and S. Liu, “Silicon-based system in packaging for light emitting diodes,” in Proceedings of the IEEE 62nd Electronic Components and Technology Conference, pp. 1267–1272, 2012.
[13]  S. Liu and X. Luo, LED Packaging for Lighting Applications, Chemical Industry Press, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133