全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2013 

Endothelin-1 Enriched Tumor Phenotype Predicts Breast Cancer Recurrence

DOI: 10.1155/2013/385398

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. Breast cancer recurrence can develop years after primary treatment. Crosstalk between breast cancer cells and their stromal microenvironment may influence tumor progression. Our primary study aim was to determine whether endothelin-1 (ET-1) expression in tumor and stroma predicts breast cancer relapse. The secondary aim was to determine ET-1/endothelin receptor A (ETAR) role on signaling pathways and apoptosis in breast cancer. Experimental Design. Patients with histologically documented stages I–III invasive breast cancer were included in the study. ET-1 expression by immunohistochemistry (IHC) in tumor cells and stroma was analyzed. Association between ET-1 expression and clinical outcome was assessed using multivariate Cox proportional hazard model. Kaplan-Meier curves were used to estimate disease-free survival (DFS). In addition, the effect of ET-1/ETAR on signaling pathways and apoptosis was evaluated in MCF-7 and MDA-MB-231 breast cancer cells. Results. With a median followup of 7 years, ET-1 non-enriched tumor phenotype had a significant association with favorable disease-free survival ( ; 95% CI 0.03–0.77; value <0.02). ER negativity, advanced stage of disease and ET-1-enriched tumor phenotype were all associated with a higher risk for recurrence. Experimental study demonstrated that ET-1 stimulation promoted Akt activation in MCF-7 and MDA-MB-231 cells. Furthermore, silencing of ETAR induced apoptosis in both hormone receptor negative and hormone receptor positive breast cancer cells. Conclusions. We found ET-1 expression in tumor and stroma to be an independent prognostic marker for breast cancer recurrence. Prospective studies are warranted to examine whether ET-1 expression in tumor/stroma could assist in stratifying patients with hormone receptor positive breast cancer for adjuvant therapy. 1. Introduction Breast cancer metastases can develop years after primary tumor treatment [1]. Current adjuvant systemic or regional therapies eliminate a majority of cancer cells. However, a subset of cancer cells, which are not effectively eradicated by the treatment, may maintain their potential for further growth. Tumor cells may interact with their stromal microenvironment to either facilitate or delay tumor dissemination, thus influencing tumor recurrence in breast cancer patients [2]. Thirty to 40% of patients with early-stage breast cancer at the time of diagnosis have disseminated tumor cells detected in the bone marrow [3]. The majority of these disseminated tumor cells die, but some of them remain dormant and have the capacity to

References

[1]  A. M. Brewster, G. N. Hortobagyi, K. R. Broglio et al., “Residual risk of breast cancer recurrence 5 years after adjuvant therapy,” Journal of the National Cancer Institute, vol. 100, no. 16, pp. 1179–1183, 2008.
[2]  R. R. Langley and I. J. Fidler, “The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs,” International Journal of Cancer, vol. 128, no. 11, pp. 2527–2535, 2011.
[3]  I. J. Diel, M. Kaufmann, S. D. Costa et al., “Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status,” Journal of the National Cancer Institute, vol. 88, no. 22, pp. 1652–1658, 1996.
[4]  C. W. Wong, A. Lee, L. Shientag et al., “Apoptosis: an early event in metastatic inefficiency,” Cancer Research, vol. 61, no. 1, pp. 333–338, 2001.
[5]  A. Bagnato, M. Loizidou, B. R. Pflug, J. Curwen, and J. Growcott, “Role of the endothelin axis and its antagonists in the treatment of cancer,” British Journal of Pharmacology, vol. 163, no. 2, pp. 220–233, 2011.
[6]  N. Said and D. Theodorescu, “Permissive role of endothelin receptors in tumor metastasis,” Life Sciences, vol. 91, no. 13-14, pp. 522–527, 2012.
[7]  K. Kojima and Z. Nihei, “Expression of endothelin-1 immunoreactivity in breast cancer,” Surgical Oncology, vol. 4, no. 6, pp. 309–315, 1995.
[8]  H. Ehrenreich, R. W. Anderson, C. H. Fox et al., “Endothelins, peptides with potent vasoactive properties, are produced by human macrophages,” Journal of Experimental Medicine, vol. 172, no. 6, pp. 1741–1748, 1990.
[9]  G. Egidy, L. Juillerat-Jeanneret, J. F. Jeannin, P. Korth, F. T. Bosman, and F. Pinet, “Modulation of human colon tumor-stromal interactions by the endothelin system,” American Journal of Pathology, vol. 157, no. 6, pp. 1863–1874, 2000.
[10]  E. E. Hinsley, S. Kumar, K. D. Hunter, et al., “Endothelin-1 stimulates oral fibroblasts to promote oral cancer invasion,” Life Sciences, vol. 91, no. 13-14, pp. 557–561, 2012.
[11]  N. Said, S. Smith, M. Sanchez-Carbayo, and D. Theodorescu, “Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 132–147, 2011.
[12]  P. Knowles, X. Shi-Wen, S. Haque, et al., “Endothelin-1 stimulates colon cancer adjacent fibroblasts,” International Journal of Cancer, vol. 130, no. 6, pp. 1264–1272, 2012.
[13]  P. Wülfing, J. Tio, C. Kersting et al., “Expression of Endothelin-A-Receptor predicts unfavourable response to neoadjuvant chemotherapy in locally advanced breast cancer,” British Journal of Cancer, vol. 91, no. 3, pp. 434–440, 2004.
[14]  P. Wülfing, R. Diallo, C. Kersting et al., “Expression of endothelin-1, endothelin-A, and endothelin-B receptor in human breast cancer and correlation with long-term follow-up,” Clinical Cancer Research, vol. 9, no. 11, pp. 4125–4131, 2003.
[15]  K. Alanen, D. X. Deng, and S. Chakrabarti, “Augmented expression of endothelin-1, endothelin-3 and the endothelin-B receptor in breast carcinoma,” Histopathology, vol. 36, no. 2, pp. 161–167, 2000.
[16]  G. Finak, N. Bertos, F. Pepin et al., “Stromal gene expression predicts clinical outcome in breast cancer,” Nature Medicine, vol. 14, no. 5, pp. 518–527, 2008.
[17]  B. J. Boersma, M. Reimers, M. Yi et al., “A stromal gene signature associated with inflammatory breast cancer,” International Journal of Cancer, vol. 122, no. 6, pp. 1324–1332, 2008.
[18]  L. Mauriac, A. Keshaviah, M. Debled et al., “Predictors of early relapse in postmenopausal women with hormone receptor-positive breast cancer in the BIG 1-98 trial,” Annals of Oncology, vol. 18, no. 5, pp. 859–867, 2007.
[19]  Early Breast Cancer Trialists' Collaborative, G., “Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials,” Lancet, vol. 365, no. 9472, pp. 1687–1717, 2005.
[20]  H. Jin, D. Tu, N. Zhao, L. E. Shepherd, and P. E. Goss, “Longer-term outcomes of letrozole versus placebo after 5 years of tamoxifen in the NCIC CTG MA.17 trial: analyses adjusting for treatment crossover,” Journal of Clinical Oncology, vol. 30, no. 7, pp. 718–721, 2012.
[21]  J. B. Nelson, M. S. Udan, G. Guruli, and B. R. Pflug, “Endothelin-1 inhibits apoptosis in prostate cancer,” Neoplasia, vol. 7, no. 7, pp. 631–637, 2005.
[22]  D. Del Bufalo, V. Di Castro, A. Biroccio et al., “Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation,” Molecular Pharmacology, vol. 61, no. 3, pp. 524–532, 2002.
[23]  S. Alexander and P. Friedl, “Cancer invasion and resistance: interconnected processes of disease progression and therapy failure,” Trends in Molecular Medicine, vol. 18, no. 1, pp. 13–26, 2012.
[24]  J. Fischgr?be, M. G?tte, K. Michels, L. Kiesel, and P. Wülfing, “Targeting endothelin A receptor enhances anti-proliferative and anti-invasive effects of the HER2 antibody trastuzumab in HER2-overexpressing breast cancer cells,” International Journal of Cancer, vol. 127, no. 3, pp. 696–706, 2010.
[25]  M. Smollich, M. G?tte, J. Fischgr?be et al., “ETAR antagonist ZD4054 exhibits additive effects with aromatase inhibitors and fulvestrant in breast cancer therapy, and improves in vivo efficacy of anastrozole,” Breast Cancer Research and Treatment, vol. 123, no. 2, pp. 345–357, 2010.
[26]  J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009.
[27]  M. W. Klymkowsky and P. Savagner, “Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe,” American Journal of Pathology, vol. 174, no. 5, pp. 1588–1593, 2009.
[28]  L. Larue and A. Bellacosa, “Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol kinase/AKT pathways,” Oncogene, vol. 24, no. 50, pp. 7443–7454, 2005.
[29]  A. Bagnato and L. Rosanò, “Epithelial-mesenchymal transition in ovarian cancer progression: a crucial role for the endothelin axis,” Cells Tissues Organs, vol. 185, no. 1–3, pp. 85–94, 2007.
[30]  D. Vergara, B. Merlot, J. P. Lucot et al., “Epithelial-mesenchymal transition in ovarian cancer,” Cancer Letters, vol. 291, no. 1, pp. 59–66, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133