全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Biomarkers for the Quick Detection of Acute Kidney Injury

DOI: 10.5402/2013/394582

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acute kidney injury (AKI) is a common and strong problem in the diagnosis of which based on measurement of BUN and serum creatinine. These traditional methods are not sensitive and specific for the diagnosis of AKI. AKI is associated with increased morbidity and mortality in critically ill patients and a quick detection is impossible with BUN and serum creatinine. A number of serum and urinary proteins have been identified that may messenger AKI prior to a rise in BUN and serum creatinine. New biomarkers of AKI, including NGAL, KIM-1, cystatin-C, IL-18, and L-FABP, are more favourable tests than creatinine which have been identified and studied in several experimental and clinical training. This paper will discuss some of these new biomarkers and their potential as useful signs of AKI. We searched the literature using PubMed and MEDLINE with acute kidney injury, urine, and serum new biomarkers and the articles were selected only from publication types in English. 1. Introduction Acute kidney injury (AKI) remains a common and significant problem in the last decade [1]. Between 5% and 20% of critically ill patients in the intensive care unit (ICU) have an episode of AKI, with acute tubular necrosis (ATN) accounting for about 75% of cases [1–3]. Despite significant advances in both critical care and nephrology, the mortality rate of hospitalized patients with AKI has remained relatively unchanged at around 50% over the past few decades [4]. The most common causes of AKI are septic shock, ischemia, and nephrotoxins. AKI has been defined conceptually as a rapid decline in glomerular filtration rate (GFR) that occurs over hours and days. It propels to a clinical syndrome characterized by a rapid decrease in renal excretory function, with the accumulation of products of nitrogen metabolism such as creatinine and urea clinically unmeasured waste products. The described notions have led to a consensus definitions of AKI by the Acute Dialysis Quality Initiative. These RIFLE (risk, injury, failure, loss, end stage) criteria have been broadly supported with minor modifications by the acute kidney injury network (AKIN) [5, 6], and both definitions have now been validated in thousands of patients [7]. The AKIN group attempted to increase the sensitivity of the RIFLE criteria by recommending that a smaller change in serum creatinine (0.3?mg/dL) be used as a threshold to define the presence of AKI and identify patients with stage 1 AKI (RIFLE-Risk) [8]. In the AKIN classifications of AKI, a time of 48?h over which AKI occurs was proposed. However, there still remains

References

[1]  N. Lameire, W. Van Biesen, and R. Vanholder, “The changing epidemiology of acute renal failure,” Nature Clinical Practice Nephrology, vol. 2, no. 7, pp. 364–377, 2006.
[2]  G. Avasthi, J. S. Sandhu, and K. Mohindra, “Acute renal failure in medical and surgical intensive care units—a one year prospective study,” Renal Failure, vol. 25, no. 1, pp. 105–113, 2003.
[3]  E. A. J. Hoste, N. H. Lameire, R. C. Vanholder, D. D. Benoit, J. M. A. Decruyenaere, and F. A. Colardyn, “Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome,” Journal of the American Society of Nephrology, vol. 14, no. 4, pp. 1022–1030, 2003.
[4]  Y. P. Ympa, Y. Sakr, K. Reinhart, and J. L. Vincent, “Has mortality from acute renal failure decreased? A systematic review of the literature,” American Journal of Medicine, vol. 118, no. 8, pp. 827–832, 2005.
[5]  R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Critical Care, vol. 8, no. 4, pp. R204–R212, 2004.
[6]  R. L. Mehta, J. A. Kellum, S. V. Shah et al., “Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury,” Critical Care, vol. 11, no. 2, article R31, 2007.
[7]  The Kidney Disease Improving Global Outcomes (KDIGO) Working Group, “Definition and classification of acute kidney injury,” Kidney International, supplement 2, pp. 19–36, 2012.
[8]  S. M. Bagshaw, C. George, and R. Bellomo, “A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients,” Nephrology Dialysis Transplantation, vol. 23, no. 5, pp. 1569–1574, 2008.
[9]  L. A. Stevens, R. A. Lafayette, R. D. Perrone, et al., “Laboratory evaluation of kidney function,” in Diseases of the Kidney and Urinary Tract, R. W. Schrier, Ed., Lippincott, Williams and Wilkins, Philadelphia, Pa, USA, 8th edition, 2007.
[10]  R. A. Star, “Treatment of acute renal failure,” Kidney International, vol. 54, no. 6, pp. 1817–1831, 1998.
[11]  A. F. Michael, S. V. Vishal, and V. B. Joseph, “Biomarkers in acute kidney injury,” in Biomarkers in Renal Disease, H. R. Mitchell and O. Mark, Eds., Nova Science, New York, NY, USA, 2008.
[12]  K. M. Schmidt-Ott, K. Mori, Y. L. Jau et al., “Dual action of neutrophil gelatinase-associated lipocalin,” Journal of the American Society of Nephrology, vol. 18, no. 2, pp. 407–413, 2007.
[13]  J. Mishra, M. A. Qing, A. Prada et al., “Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2534–2543, 2003.
[14]  D. R. McIlroy, G. Wagener, and H. T. Lee, “Biomarkers of acute kidney injury: an evolving domain,” Anesthesiology, vol. 112, no. 4, pp. 998–1004, 2010.
[15]  K. Mori, H. T. Lee, D. Rapoport et al., “Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury,” The Journal of Clinical Investigation, vol. 115, no. 3, pp. 610–621, 2005.
[16]  J. Mishra, K. Mori, Q. Ma, C. Kelly, J. Barasch, and P. Devarajan, “Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity,” American Journal of Nephrology, vol. 24, no. 3, pp. 307–315, 2004.
[17]  J. Mishra, C. Dent, R. Tarabishi et al., “Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery,” The Lancet, vol. 365, no. 9466, pp. 1231–1238, 2005.
[18]  F. I. Fadel, A. M. O. Abdel Rahman, M. F. Mohamed et al., “Plasma neutrophil gelatinase-associated lipocalin as an early biomarker for prediction of acute kidney injury after cardio-pulmonary bypass in pediatric cardiac surgery,” Archives of Medical Science, vol. 8, no. 2, pp. 250–255, 2012.
[19]  M. Zappitelli, K. K. Washburn, A. A. Arikan et al., “Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study,” Critical Care, vol. 11, article R84, 2007.
[20]  P. Devarajan, “Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 68, no. 241, pp. 89–94, 2008.
[21]  C. D. Krawczeski, J. G. Woo, Y. Wang, M. R. Bennett, Q. Ma, and P. Devarajan, “Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass,” Journal of Pediatrics, vol. 158, no. 6, pp. 1009–e1, 2011.
[22]  G. Wagener, M. Jan, M. Kim et al., “Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery,” Anesthesiology, vol. 105, no. 3, pp. 485–491, 2006.
[23]  J. L. Koyner, M. R. Bennett, E. M. Worcester et al., “Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery,” Kidney International, vol. 74, no. 8, pp. 1059–1069, 2008.
[24]  G. Wagener, G. Gubitosa, S. Wang, N. Borregaard, M. Kim, and H. T. Lee, “Urinary neutrophil-associated lipocalin and acute kidney injury after cardiac surgery,” American Journal of Kidney Diseases, vol. 52, no. 3, pp. 425–433, 2008.
[25]  A. Haase-Fielitz, R. Bellomo, P. Devarajan et al., “Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery-A prospective cohort study,” Critical Care Medicine, vol. 37, no. 2, pp. 553–560, 2009.
[26]  M. Haase, R. Bellomo, P. Devarajan et al., “The predictive performance of plasma neutrophil gelatinase-associated lipocalin (NGAL) increases with grade of acute kidney injury,” Annals of Thoracic Surgery, vol. 88, no. 1, pp. 124–130, 2009.
[27]  A. Haase-Fielitz, R. Bellomo, P. Devarajan et al., “The predictive performance of plasma neutrophil gelatinase-associated lipocalin (NGAL) increases with grade of acute kidney injury,” Nephrology Dialysis Transplantation, vol. 24, no. 11, pp. 3349–3354, 2009.
[28]  T. E. Perry, J. D. Muehlschlegel, K. Y. Liu et al., “Plasma neutrophil gelatinase-associated lipocalin and acute postoperative kidney injury in adult cardiac surgical patients,” Anesthesia and Analgesia, vol. 110, no. 6, pp. 1541–1547, 2010.
[29]  S. M. Tuladhar, V. O. Püntmann, M. Soni, P. P. Punjabi, and R. G. Bogle, “Rapid detection of acute kidney injury by plasma and urinary neutrophil gelatinase-associated lipocalin after cardiopulmonary bypass,” Journal of Cardiovascular Pharmacology, vol. 53, no. 3, pp. 261–266, 2009.
[30]  P. Devarajan, “NGAL in Acute Kidney Injury: from Serendipity to Utility,” American Journal of Kidney Diseases, vol. 52, no. 3, pp. 395–399, 2008.
[31]  H. Bachorzewska-Gajewska, J. Malyszko, E. Sitniewska, J. S. Malyszko, and S. Dobrzycki, “Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions,” American Journal of Nephrology, vol. 26, no. 3, pp. 287–292, 2006.
[32]  H. Bachorzewska-Gajewska, B. Poniatowski, and S. Dobrzycki, “NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine,” Advances in Medical Sciences, vol. 54, no. 2, pp. 221–224, 2009.
[33]  O. G. Shaker, A. El-Shehaby, and M. El-Khatib, “Early diagnostic markers for contrast nephropathy in patients undergoing coronary angiography,” Angiology, vol. 61, no. 8, pp. 731–736, 2010.
[34]  R. Hirsch, C. Dent, H. Pfriem et al., “NGAL is an early predictive biomarker of contrast-induced nephropathy in children,” Pediatric Nephrology, vol. 22, no. 12, pp. 2089–2095, 2007.
[35]  F. Gaspari, P. Cravedi, M. Mandalà et al., “Predicting cisplatin-induced acute kidney injury by urinary neutrophil gelatinase-associated lipocalin excretion: a pilot prospective case-control study,” Nephron—Clinical Practice, vol. 115, no. 2, pp. c154–c160, 2010.
[36]  H.-D. Park, J.-Y. Seo, and S.-Y. Lee, “The Relationship between serum neutrophil gelatinase-associated lipocalin and renal function in patients with vancomycin treatment,” Annals of Clinical and Laboratory Science, vol. 42, no. 1, pp. 7–13, 2012.
[37]  A. Wasilewska, W. Zoch-Zwierz, K. Taranta-Janusz, and J. Michaluk-Skutnik, “Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of cyclosporine nephrotoxicity?” Pediatric Nephrology, vol. 25, no. 5, pp. 889–897, 2010.
[38]  D. S. Wheeler, P. Devarajan, Q. Ma et al., “Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock,” Critical Care Medicine, vol. 36, no. 4, pp. 1297–1303, 2008.
[39]  H. N. Yang, C. S. Boo, M. G. Kim, S. K. Jo, W. Y. Cho, and H. K. Kim, “Urine neutrophil gelatinase-associated lipocalin: an independent predictor of adverse outcomes in acute kidney injury,” American Journal of Nephrology, vol. 31, no. 6, pp. 501–509, 2010.
[40]  H. R. H. De Geus, J. Bakker, E. M. E. H. Lesaffre, and J. L. M. L. Le Noble, “Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 7, pp. 907–914, 2011.
[41]  E. D. Siew, L. B. Ware, T. Gebretsadik et al., “Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults,” Journal of the American Society of Nephrology, vol. 20, no. 8, pp. 1823–1832, 2009.
[42]  D. N. Cruz, M. De Cal, F. Garzotto et al., “Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population,” Intensive Care Medicine, vol. 36, no. 3, pp. 444–451, 2010.
[43]  S. M. Bagshaw, M. Bennett, M. Haase et al., “Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness,” Intensive Care Medicine, vol. 36, no. 3, pp. 452–461, 2010.
[44]  J. M. Constantin, E. Futier, S. Perbet et al., “Plasma neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in adult critically ill patients: a prospective study,” Journal of Critical Care, vol. 25, no. 1, pp. 176.e1–176.e6, 2010.
[45]  P. Lentini, M. De Cal, A. Clementi, A. D'Angelo, and C. Ronco, “Sepsis and AKI in ICU patients: the Role of plasma biomarkers,” Critical Care Research and Practice, vol. 2012, Article ID 856401, 5 pages, 2012.
[46]  Z. H. Endre, J. W. Pickering, R. J. Walker et al., “Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function,” Kidney International, vol. 79, no. 10, pp. 1119–1130, 2011.
[47]  H. R. de Geus, J.G. Woo, and Y. Urinary, “Neutrophil gelatinase-associated lipocalin measured on admission to the intensive care,” Nephron Extra, vol. 1, no. 1, pp. 9–23, 2011.
[48]  J. M?rtensson, M. Bell, A. Oldner, S. Xu, P. Venge, and C. R. Martling, “Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury,” Intensive Care Medicine, vol. 36, no. 8, pp. 1333–1340, 2010.
[49]  M. E. Hollmen, L. E. Kyll?nen, K. A. Inkinen, M. L. T. Lalla, J. Merenmies, and K. T. Salmela, “Deceased donor neutrophil gelatinase-associated lipocalin and delayed graft function after kidney transplantation: a prospective study,” Critical Care, vol. 15, no. 3, article R121, 2011.
[50]  C. R. Parikh, A. Jani, J. Mishra et al., “Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation,” American Journal of Transplantation, vol. 6, no. 7, pp. 1639–1645, 2006.
[51]  I. E. Hall, S. G. Yarlagadda, S. G. Coca et al., “IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation,” Journal of the American Society of Nephrology, vol. 21, no. 1, pp. 189–197, 2010.
[52]  T. Ichimura, J. V. Bonventre, V. Bailly et al., “Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury,” The Journal of Biological Chemistry, vol. 273, no. 7, pp. 4135–4142, 1998.
[53]  V. S. Vaidya, V. Ramirez, T. Ichimura, N. A. Bobadilla, and J. V. Bonventre, “Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury,” American Journal of Physiology, vol. 290, no. 2, pp. F517–F529, 2006.
[54]  V. S. Vaidya, G. M. Ford, S. S. Waikar et al., “A rapid urine test for early detection of kidney injury,” Kidney International, vol. 76, no. 1, pp. 108–114, 2009.
[55]  T. Ichimura, E. J. P. V. Asseldonk, B. D. Humphreys, L. Gunaratnam, J. S. Duffield, and J. V. Bonventre, “Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells,” The Journal of Clinical Investigation, vol. 118, no. 5, pp. 1657–1668, 2008.
[56]  W. K. Han, V. Bailly, R. Abichandani, R. Thadhani, and J. V. Bonventre, “Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury,” Kidney International, vol. 62, no. 1, pp. 237–244, 2002.
[57]  T. Ichimura, C. C. Hung, S. A. Yang, J. L. Stevens, and J. V. Bonventre, “Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury,” American Journal of Physiology, vol. 286, no. 3, pp. F552–F563, 2004.
[58]  P. Espandiari, J. Zhang, B. A. Rosenzweig et al., “The utility of a rodent model in detecting pediatric drug-induced nephrotoxicity,” Toxicological Sciences, vol. 99, no. 2, pp. 637–648, 2007.
[59]  W. C. Prozialeck, V. S. Vaidya, J. Liu et al., “Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity,” Kidney International, vol. 72, no. 8, pp. 985–993, 2007.
[60]  Y. Zhou, V. S. Vaidya, R. P. Brown et al., “Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium,” Toxicological Sciences, vol. 101, no. 1, pp. 159–170, 2008.
[61]  P. Vinken, S. Starckx, and E. Barale-Thomas, “Tissue kim-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats,” Toxicologic Pathology, vol. 40, no. 7, pp. 1049–1062, 2012.
[62]  W. K. Han, G. Wagener, Y. Zhu, S. Wang, and H. T. Lee, “Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 5, pp. 873–882, 2009.
[63]  J. L. Koyner, V. S. Vaidya, M. R. Bennett et al., “Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 12, pp. 2154–2165, 2010.
[64]  O. Liangos, M. C. Perianayagam, V. S. Vaidya et al., “Urinary N-acetyl-β-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure,” Journal of the American Society of Nephrology, vol. 18, no. 3, pp. 904–912, 2007.
[65]  M. M. van Timmeren, M. C. van den Heuvel, V. Bailly, S. J. L. Bakker, H. van Goor, and C. A. Stegeman, “Tubular kidney injury molecule-1 (KIM-1) in human renal disease,” Journal of Pathology, vol. 212, no. 2, pp. 209–217, 2007.
[66]  J. Malyszko, E. Koc-Zorawska, J. S. Malyszko, and M. Mysliwiec, “Kidney injury molecule-1 correlates with kidney function in renal allograft recipients,” Transplantation Proceedings, vol. 42, no. 10, pp. 3957–3959, 2010.
[67]  C. C. Szeto, B. C. H. Kwan, K. B. Lai et al., “Urinary expression of kidney injury markers in renal transplant recipients,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 12, pp. 2329–2337, 2010.
[68]  J. Westhuyzen, “Cystatin C: a promising marker and predictor of impaired renal function,” Annals of Clinical and Laboratory Science, vol. 36, no. 4, pp. 387–394, 2006.
[69]  S. Herget-Rosenthal, G. Marggraf, J. Hüsing et al., “Early detection of acute renal failure by serum cystatin C,” Kidney International, vol. 66, no. 3, pp. 1115–1122, 2004.
[70]  S. Herget-Rosenthal, S. Trabold, F. Pietruck, M. Holtmann, T. Philipp, and A. Kribben, “Cystatin C: efficacy as screening test for reduced glomerular filtration rate,” American Journal of Nephrology, vol. 20, no. 2, pp. 97–102, 2000.
[71]  K. Jung and M. Jung, “Cystatin C: a promising marker of glomerular filtration rate to replace creatinine,” Nephron, vol. 70, no. 3, pp. 370–371, 1995.
[72]  D. J. Newman, H. Thakkar, R. G. Edwards et al., “Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine,” Kidney International, vol. 47, no. 1, pp. 312–318, 1995.
[73]  D. Stickle, B. Cole, K. Hock, K. A. Hruska, and M. G. Scott, “Correlation of plasma concentrations of cystatin C and creatinine to inulin clearance in a pediatric population,” Clinical Chemistry, vol. 44, no. 6, pp. 1334–1338, 1998.
[74]  L. Risch, A. Blumberg, and A. R. Huber, “Assessment of renal function in renal transplant patients using cystatin C. A comparison to other renal function markers and estimates,” Renal Failure, vol. 23, no. 3-4, pp. 439–448, 2001.
[75]  H. Finney, D. J. Newman, H. Thakkar, J. M. E. Fell, and C. P. Price, “Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children,” Archives of Disease in Childhood, vol. 82, no. 1, pp. 71–75, 2000.
[76]  A. Grubb, J. Bj?rk, V. Lindstr?m, G. Sterner, P. Bondesson, and U. Nyman, “A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 65, no. 2, pp. 153–162, 2005.
[77]  A. Grubb, U. Nyman, J. Bj?rk et al., “Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children,” Clinical Chemistry, vol. 51, no. 8, pp. 1420–1431, 2005.
[78]  J. D. Herrero-Morín, S. Málaga, N. Fernández et al., “Cystatin C and beta2-microglobulin: markers of glomerular filtration in critically ill children,” Critical Care, vol. 11, article R59, 2007.
[79]  A. Spahillari, C. R. Parikh, K. Sint et al., “Serum cystatin C-versus creatinine-based definitions of acute kidney injury following cardiac surgery: a prospective cohort study,” American Journal of Kidney Diseases. In press.
[80]  M. G. Shlipak, S. G. Coca, Z. Wang et al., “Presurgical serum cystatin C and risk of acute kidney injury after cardiac surgery,” American Journal of Kidney Diseases, vol. 58, no. 3, pp. 366–373, 2011.
[81]  L. Manetti, E. Pardini, M. Genovesi et al., “Thyroid function differently affects serum cystatin C and creatinine concentrations,” Journal of Endocrinological Investigation, vol. 28, no. 4, pp. 346–349, 2005.
[82]  L. Risch, R. Herklotz, A. Blumberg, and A. R. Huber, “Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients,” Clinical Chemistry, vol. 47, no. 11, pp. 2055–2059, 2001.
[83]  L. Risch and A. R. Huber, “Glucocorticoids and increased serum cystatin C concentrations,” Clinica Chimica Acta, vol. 320, no. 1-2, pp. 133–134, 2002.
[84]  I. E. Hall, J. L. Koyner, M. D. Doshi, R. J. Marcus, and C. R. Parikh, “Urine cystatin C as a biomarker of proximal tubular function immediately after kidney transplantation,” American Journal of Nephrology, vol. 33, no. 5, pp. 407–413, 2011.
[85]  V. Y. Melnikov, T. Ecder, G. Fantuzzi et al., “Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure,” The Journal of Clinical Investigation, vol. 107, no. 9, pp. 1145–1152, 2001.
[86]  V. Y. Melnikov, S. Faubel, B. Siegmund, M. Scott Lucia, D. Ljubanovic, and C. L. Edelstein, “Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice,” The Journal of Clinical Investigation, vol. 110, no. 8, pp. 1083–1091, 2002.
[87]  Z. He, L. Lu, C. Altmann et al., “Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury,” American Journal of Physiology, vol. 295, no. 5, pp. F1414–F1421, 2008.
[88]  H. Wu, M. L. Craft, P. Wang et al., “IL-18 contributes to renal damage after ischemia-reperfusion,” Journal of the American Society of Nephrology, vol. 19, no. 12, pp. 2331–2341, 2008.
[89]  J. Wang, Q. Long, W. Zhang, and N. Chen, “Protective effects of exogenous interleukin 18-binding protein in a rat model of acute renal ischemia-reperfusion injury,” Shock, vol. 37, no. 3, pp. 333–340, 2012.
[90]  Z. He, B. Dursun, D. J. Oh, L. Lu, S. Faubel, and C. L. Edelstein, “Macrophages are not the source of injurious interleukin-18 in ischemic acute kidney injury in mice,” American Journal of Physiology, vol. 296, no. 3, pp. F535–F542, 2009.
[91]  C. L. Edelstein, T. S. Hoke, H. Somerset et al., “Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury,” Nephrology Dialysis Transplantation, vol. 22, no. 4, pp. 1052–1061, 2007.
[92]  C. R. Parikh, A. Jani, V. Y. Melnikov, S. Faubel, and C. L. Edelstein, “Urinary interleukin-18 is a marker of human acute tubular necrosis,” American Journal of Kidney Diseases, vol. 43, no. 3, pp. 405–414, 2004.
[93]  I. Striz, K. Eliska, H. Eva et al., “Interleukin 18 (IL-18) upregulation in acute rejection of kidney allograft,” Immunology Letters, vol. 99, no. 1, pp. 30–35, 2005.
[94]  C. R. Parikh, E. Abraham, M. Ancukiewicz, and C. L. Edelstein, “Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit,” Journal of the American Society of Nephrology, vol. 16, no. 10, pp. 3046–3052, 2005.
[95]  E. D. Siew, T. A. Ikizler, T. Gebretsadik et al., “Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 8, pp. 1497–1505, 2010.
[96]  K. K. Washburn, M. Zappitelli, A. A. Arikan et al., “Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children,” Nephrology Dialysis Transplantation, vol. 23, no. 2, pp. 566–572, 2008.
[97]  C. R. Parikh, J. Mishra, H. Thiessen-Philbrook et al., “Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery,” Kidney International, vol. 70, no. 1, pp. 199–203, 2006.
[98]  C. R. Parikh, P. Devarajan, M. Zappitelli et al., “Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery,” Journal of the American Society of Nephrology, vol. 22, no. 9, pp. 1737–1747, 2011.
[99]  C. R. Parikh, S. G. Coca, H. Thiessen-Philbrook et al., “Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery,” Journal of the American Society of Nephrology, vol. 22, no. 9, pp. 1748–1757, 2011.
[100]  T. Yokoyama, A. Kamijo-Ikemori, T. Sugaya, S. Hoshino, T. Yasuda, and K. Kimura, “Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage,” American Journal of Pathology, vol. 174, no. 6, pp. 2096–2106, 2009.
[101]  E. Noiri, K. Doi, K. Negishi et al., “Urinary fatty acid-binding protein 1: an early predictive biomarker of kidney injury,” American Journal of Physiology, vol. 296, no. 4, pp. F669–F679, 2009.
[102]  T. Yamamoto, E. Noiri, Y. Ono et al., “Renal L-type fatty acid-binding protein in acute ischemic injury,” Journal of the American Society of Nephrology, vol. 18, no. 11, pp. 2894–2902, 2007.
[103]  K. Negishi, E. Noiri, K. Doi et al., “Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury,” American Journal of Pathology, vol. 174, no. 4, pp. 1154–1159, 2009.
[104]  D. Portilla, C. Dent, T. Sugaya et al., “Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery,” Kidney International, vol. 73, no. 4, pp. 465–472, 2008.
[105]  D. Katagiri, K. Doi, K. Honda et al., “Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery,” Annals of Thoracic Surgery, vol. 93, no. 2, pp. 577–583, 2012.
[106]  T. Nakamura, T. Sugaya, and H. Koide, “Urinary liver-type fatty acid-binding protein in septic shock: effect of polymyxin B-immobilized fiber hemoperfusion,” Shock, vol. 31, no. 5, pp. 454–459, 2009.
[107]  K. Doi, E. Noiri, R. Maeda-Mamiya et al., “Urinary L-type fatty acid-binding protein as a new biomarker of sepsis complicated with acute kidney injury,” Critical Care Medicine, vol. 38, no. 10, pp. 2037–2042, 2010.
[108]  Y. Li, M. Zhu, Q. Xia et al., “Urinary neutrophil gelatinase-associated lipocalin and L-type fatty acid binding protein as diagnostic markers of early acute kidney injury after liver transplantation,” Biomarkers, vol. 17, no. 4, pp. 336–342, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133