This paper was aimed to review the studies published about short dental implants. In the focus were the works that investigated the effect of biting forces of the rate of marginal bone resorption around short implants and their survival rates. Bone deformation defined by strain was obviously higher around short implants than the conventional ones. The clinical outcomes of 6 mm short implants after 2 years showed a survival rate of 94% to 95% and lower survival rate (<80%) for 7?mm short implants after 3 to 6 years for single crown restorations. The short implants used for supporting fixed partial prostheses had a survival rate of 98.9%. Short implants can be considered as a good alternative implant therapy to support single crown or partial fixed restorations. 1. Introduction After tooth loss, severely atrophic residual alveolar ridges are fairly common, especially in patients who have been edentulous for a long period of time. The bone volume of posterior areas of the maxilla and the mandible is frequently insufficient for the placement of implants with adequate dimensions, unless a procedure such as ridge augmentation or sinus floor elevation is performed. Although widely utilised, these techniques imply greater morbidity, longer treatment times, and higher costs. The sinus cavity in the maxilla and alveolar nerve proximity in the mandible are clinical situations where short implants could be considered as an alternative treatment option. Some have hesitated to use these implants due to the perception of a higher risk of failure compared with longer implants for both fixed restorations [1–5], as well as maxillary overdentures [6, 7]. More recent studies, however, suggested that short implants (7 to <10?mm) can reach similar success rates as longer ones for the support of fixed partial dental prostheses [8–10]. Even 3-year [11] and 7-year [12] followup studies reported retrospectively that short implants (8 to 9?mm long) [9, 13, 14] were not less successful compared with implants >10?mm long in the posterior region with fixed partial dental prostheses. This paper was aimed to review the works regarding the stability and survival rate of short implants under functional loads. Numerical and clinical studies were reviewed. 2. Implant Fatigue under Biting Forces Prospective studies have shown the positive effect of conventional implant therapy on maximum bite force [15–19]. However, alveolar bone (similar to long bones) adapts its strength to the applied mechanical loading by means of bone modelling/remodelling [20–22]. The response to increased mechanical
References
[1]
R. A. Jaffin and C. L. Berman, “The excessive loss of Br?nemark fixtures in type IV bone: a 5-year analysis,” Journal of Periodontology, vol. 62, no. 1, pp. 2–4, 1991.
[2]
T. Jemt and U. Lekholm, “Oral implant treatment in posterior partially edentulous jaws: a 5-year follow-up report,” The International Journal of Oral & Maxillofacial Implants, vol. 8, no. 6, pp. 635–640, 1993.
[3]
C. C. L. Wyatt and G. A. Zarb, “Treatment outcomes of patients with implant-supported fixed partial prostheses,” International Journal of Oral and Maxillofacial Implants, vol. 13, no. 2, pp. 204–211, 1998.
[4]
I. Naert, G. Koutsikakis, J. Duyck, M. Quirynen, R. Jacobs, and D. Van Steenberghe, “Biologic outcome of implant-supported restorations in the treatment of partial edentulism—part 1: a longitudinal clinical evaluation,” Clinical Oral Implants Research, vol. 13, no. 4, pp. 381–389, 2002.
[5]
I. Naert, G. Koutsikakis, M. Quirynen, J. Duyck, D. Van Steenberghe, and R. Jacobs, “Biologic outcome of implant-supported restorations in the treatment of partial edentulism—part 2: a longitudinal radiographic evaluation,” Clinical Oral Implants Research, vol. 13, no. 4, pp. 390–395, 2002.
[6]
T. Jemt, “Implant treatment in the severely resorbed maxilla. A 3-year follow-up study on 70 patients,” Clinical Oral Implants Research, vol. 4, no. 3, pp. 187–194, 1993.
[7]
M. F. W. Y. Chan, T. O. N?rhi, C. De Baat, and W. Kalk, “Treatment of the atrophic edentulous maxilla with implant-supported overdentures: a review of the literature,” International Journal of Prosthodontics, vol. 11, no. 1, pp. 7–15, 1998.
[8]
T. J. Griffin and W. S. Cheung, “The use of short, wide implants in posterior areas with reduced bone height: a retrospective investigation,” Journal of Prosthetic Dentistry, vol. 92, no. 2, pp. 139–144, 2004.
[9]
F. Renouard and D. Nisand, “Short implants in the severely resorbed maxilla: a 2-year retrospective clinical study,” Clinical Implant Dentistry and Related Research, vol. 7, no. 1, pp. S104–S110, 2005.
[10]
P. A. Fugazzotto, “Shorter implants in clinical practice: rationale and treatment results,” International Journal of Oral and Maxillofacial Implants, vol. 23, no. 3, pp. 487–496, 2008.
[11]
J. P. Bernard, U. C. Belser, J. P. Martinet, and S. A. Borgis, “Osseointegration of Br?nemark fixtures using a single-step operating technique. A preliminary prospective one-year study in the edentulous mandible,” Clinical Oral Implants Research, vol. 6, no. 2, pp. 122–129, 1995.
[12]
R. Nedir, M. Bischof, J. M. Briaux, S. Beyer, S. Szmukler-Monder, and J. P. Bernard, “A 7-year life table analysis from a prospective study on ITI implants with special emphasis on the use of short implants. Results from a private practice,” Clinical Oral Implants Research, vol. 15, no. 2, pp. 150–157, 2004.
[13]
A. Sharan and D. Madjar, “Maxillary sinus pneumatization following extractions: a radiographic study,” International Journal of Oral and Maxillofacial Implants, vol. 23, no. 1, pp. 48–56, 2008.
[14]
N. Van Assche, S. Michels, M. Quirynen, and I. Naert, “Extra short dental implants supporting an overdenture in the edentulous maxilla: a proof of concept,” Clinical Oral Implants Research, vol. 23, no. 5, pp. 567–576, 2012.
[15]
J. S. Feine, K. Maskawi, P. de Grandmont, W. B. Donohue, R. Tanguay, and J. P. Lund, “Within-subject comparisons of implant-supported mandibular prostheses: evaluation of masticatory function,” Journal of Dental Research, vol. 73, no. 10, pp. 1646–1656, 1994.
[16]
F. A. Fontijn-Tekamp, A. P. Slagter, M. A. Van't Hof, M. E. Geertman, and W. Kalk, “Bite forces with mandibular implant-retained overdentures,” Journal of Dental Research, vol. 77, no. 10, pp. 1832–1839, 1998.
[17]
L. Tang, J. P. Lund, R. Taché, C. M. L. Clokie, and J. S. Feine, “A within-subject comparison of mandibular long-bar and hybrid implant-supported prostheses: evaluation of masticatory function,” Journal of Dental Research, vol. 78, no. 9, pp. 1544–1553, 1999.
[18]
M. Bakke, B. Holm, and K. Gotfredsen, “Masticatory function and patient satisfaction with implant-supported mandibular overdentures: a prospective 5-year study,” International Journal of Prosthodontics, vol. 15, no. 6, pp. 575–581, 2002.
[19]
F. M. C. Van Kampen, A. Van der Bilt, M. S. Cune, and F. Bosman, “The influence of various attachment types in mandibular implant-retained overdentures on maximum bite force and EMG,” Journal of Dental Research, vol. 81, no. 3, pp. 170–173, 2002.
[20]
H. M. Frost, “Bone's mechanostat: a 2003 update,” Anatomical Record Part A, vol. 275, no. 2, pp. 1081–1101, 2003.
[21]
I. Hasan, F. Heinemann, L. Keilig, and C. Bourauel, “Simulating the trabecular bone structure around dental implants: a case presentation,” Biomediziniche Technik, vol. 57, no. 1, pp. 17–19, 2012.
[22]
I. Hasan, A. Rahimi, L. Keilig, K. T. Brinkmann, and C. Bourauel, “Computational simulation of internal bone remodelling around dental implants: a sensitivity analysis,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 15, no. 8, pp. 807–814, 2012.
[23]
F. Isidor, “Influence of forces on peri-implant bone,” Clinical Oral Implants Research, vol. 17, no. 2, supplement, pp. S8–S18, 2006.
[24]
I. Naert, G. Alsaadi, D. Van Steenberghe, and M. Quirynen, “A 10-year randomized clinical trial on the influence of splinted and unsplinted oral implants retaining mandibular overdentures: peri-implant outcome,” International Journal of Oral and Maxillofacial Implants, vol. 19, no. 5, pp. 695–702, 2004.
[25]
F. Van Kampen, M. Cune, A. Van Der Bilt, and F. Bosman, “The effect of maximum bite force on marginal bone loss in mandibular overdenture treatment: an in vivo study,” Clinical Oral Implants Research, vol. 16, no. 5, pp. 587–593, 2005.
[26]
L. Pierrisnard, F. Renouard, P. Renault, and M. Barquins, “Influence of implant length and bicortical anchorage on implant stress distribution,” Clinical Implant Dentistry and Related Research, vol. 5, no. 4, pp. 254–262, 2003.
[27]
E. Anitua, R. Tapia, F. Luzuriaga, and G. Orive, “Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis,” The International Journal of Periodontics & Restorative Dentistry, vol. 30, no. 1, pp. 89–95, 2010.
[28]
E. Anitua and G. Orive, “Short implants in maxillae and mandibles: a retrospective study with 1 to 8 years of follow-up,” Journal of Periodontology, vol. 81, no. 6, pp. 819–826, 2010.
[29]
I. Hasan, F. Heinemann, M. Aitlahrach, and C. Bourauel, “Biomechanical finite element analysis of small diameter and short dental implant,” Biomedizinische Technik, vol. 55, no. 6, pp. 341–350, 2010.
[30]
C. Bourauel, M. Aitlahrach, F. Heinemann, and I. Hasan, “Biomechanical finite element analysis of small diameter and short dental implants: extensional study of commercial implants,” Biomediziniche Technik, vol. 57, no. 1, pp. 21–32, 2012.
[31]
F. Rossi, E. Ricci, C. Marchetti, N. P. Lang, and D. Botticelli, “Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2-year follow-up cohort study,” Clinical Oral Implants Research, vol. 21, no. 9, pp. 937–943, 2010.
[32]
M. L. Arlin, “Short dental implants as a treatment option: results from an observational study in a single private practice,” International Journal of Oral and Maxillofacial Implants, vol. 21, no. 5, pp. 769–776, 2006.
[33]
D. Weng, Z. Jacobson, D. Tarnow et al., “A prospective multicenter clinical trial of 3i machined-surface implants: results after 6 years of follow-up,” International Journal of Oral and Maxillofacial Implants, vol. 18, no. 3, pp. 417–423, 2003.
[34]
S. Winkler, H. F. Morris, and S. Ochi, “Implant survival to 36 months as related to length and diameter,” Annals of Periodontology, vol. 5, no. 1, pp. 22–31, 2000.
[35]
C. E. Misch, J. Steigenga, E. Barboza, F. Misch-Dietsh, and L. J. Cianciola, “Short dental implants in posterior partial edentulism: a multicenter retrospective 6-year case series study,” Journal of Periodontology, vol. 77, no. 8, pp. 1340–1347, 2006.
[36]
T. C. Yang, Y. Maeda, and T. Gonda, “Biomechanical rationale for short implants in splinted restorations: an in vitro study,” The International Journal of Prosthodontics, vol. 24, no. 2, pp. 130–132, 2011.
[37]
F. Pieri, N. N. Aldini, M. Fini, C. Marchetti, and G. Corinaldesi, “Preliminary 2-year report on treatment outcomes for 6 mm long implants in posterior atrophic mandibles,” International Journal of Prosthodontics, vol. 25, no. 3, pp. 279–289, 2012.
[38]
R. Rossi, E. L. Agliardi, A. Pozzi, C. F. Stappert, R. Benzi, and E. Gherlone, “Immediate fixed rehabilitation of the edentulous maxilla: a prospective clinical and radiological study after 3 years of loading,” Clinical Implant and Dental Relatated Research, 2012.
[39]
P. Malo, M. De Araújo Nobre, A. Lopes, S. M. Moss, and G. J. Molina, “A longitudinal study of the survival of All-on-4 implants in the mandible with up to 10 years of follow-up,” Journal of the American Dental Association, vol. 142, no. 3, pp. 310–320, 2011.
[40]
G. Tasoulis, S. G. Yao, and J. B. Fine, “The maxillary sinus: challenges and treatments for implant placement,” Compendium of Continuing Education in Dentistry, vol. 32, no. 1, pp. 10–14, 2011.
[41]
M. J. Kim, U. W. Jung, C. S. Kim et al., “Maxillary sinus septa: prevalence, height, location, and morphology. A reformatted computed tomography scan analysis,” Journal of Periodontology, vol. 77, no. 5, pp. 903–908, 2006.
[42]
S. G. Kim and S. M. Baik, “Diagnosis and treatment of maxillary sinusitis after implant placement,” Implant Dentistry, vol. 19, no. 2, pp. 115–121, 2010.
[43]
A. Stern and J. Green, “Sinus lift procedures: an overview of current techniques,” Dental Clinics of North America, vol. 56, no. 1, pp. 219–233, 2012.
[44]
F. Heinemann, T. Mundt, R. Biffar, T. Gedrange, and W. Goetz, “A 3-year clinical and radiographic study of implants placed simultaneously with maxillary sinus floor augmentations using a new nanocrystalline hydroxyapatite,” Journal of Physiology and Pharmacology, vol. 60, pp. 91–97, 2009.
[45]
M. Esposito, M. G. Grusovin, J. Rees et al., “Effectiveness of sinus lift procedures for dental implant rehabilitation: a Cochrane systematic review,” European Journal of Oral Implantology, vol. 3, no. 1, pp. 7–26, 2010.
[46]
P. Felice, C. Marchetti, A. Piattelli et al., “Vertical ridge augmentation of the atrophic posterior mandible with interpositional block grafts: bone from the iliac crest versus bovine anorganic bone,” European Journal of Oral Implantology, vol. 1, no. 3, pp. 183–198, 2008.
[47]
M. Esposito, G. Cannizarro, E. Soardi, G. Pellegrino, R. Pistilli, and P. Felice, “A 3-year post-loading report of a randomised controlled trial on the rehabilitation of posterior atrophic mandibles: Short implants or longer implants in vertically augmented bone?” European Journal of Oral Implantology, vol. 4, no. 4, pp. 301–311, 2011.
[48]
G. Greenstein and D. Tarnow, “The mental foramen and nerve: clinical and anatomical factors related to dental implant placement: a literature review,” Journal of Periodontology, vol. 77, no. 12, pp. 1933–1943, 2006.
[49]
G. Kalt and P. Gehrke, “Transfer precision of three-dimensional implant planning with CT assisted offline navigation,” International Journal of Computerized Dentistry, vol. 11, no. 3-4, pp. 213–225, 2008.
[50]
H. J. Nickenig, S. Eitner, D. Rothamel, M. Wichmann, and J. E. Z?ller, “Possibilities and limitations of implant placement by virtual planning data and surgical guide templates,” International Journal of Computerized Dentistry, vol. 15, no. 1, pp. 9–21, 2008.