The procedure of catheter ablation for the treatment of drug resistant atrial fibrillation (AF) has evolved but still relies on lesion sets intended to isolate areas of focal firing, mainly the myocardial sleeves of the pulmonary veins (PVs), from the rest of the atria. However the success rates for this procedure have varied inversely with the type of AF. At best success rates have been 20 to 30% below that of other catheter ablation procedures for Wolff-Parkinson-White syndrome, atrioventricular junctional re-entrant tachycardia and atrial flutter. Basic and clinical evidence has emerged suggesting a critical role of the ganglionated plexi (GP) at the PV-atrial junctions in the initiation and maintenance of the focal form of AF. At present the highest success rates have been obtained with the combination of PV isolation and GP ablation both as catheter ablation or minimally invasive surgical procedures. Various lines of evidence from earlier and more recent reports provide that both neurally based and myocardially based forms of AF can separately dominate or coexist within the context of atrial remodeling. Future studies are focusing on non-pharmacological, non-ablative approaches for the prevention and treatment of AF in order to avoid the substantive complications of both these regimens. 1. Historical Background: From Bedside to Bench The examination of a patient with chest palpitations and an irregular and rapid pulse was more definitively diagnosed and designated as auricular fibrillation with the advent of the electrocardiogram at the beginning of the 20th century. This clinical observation engendered an ongoing polemic for many subsequent decades regarding the mechanism underlying this most common disordered cardiac rhythm. Essentially two schools of thought developed, each with its chief proponents, each based on accumulated experimental evidence, which were apparently contradictory to one another. Specifically, Scherf and his associates [1, 2] promulgated the focal theory of atrial fibrillation (AF) by demonstrating that substances, such as aconitine [1] or acetylcholine applied to the atrial appendage or to the area of the sinus/AV node, [2] could induce a rapid auricular tachycardia or auricular fibrillation, respectively. Isolation of the appendage or local cooling was consistently able to suppress the tachyarrhythmia thereby promoting the conclusion that AF was focal. On the other hand, initial studies by Moe [3] provided strong evidence for multiple wavelets (reentrant circuits) occupying the atria during AF induced by triggering atrial
References
[1]
D. Scherf, “Studies on auricular tachycardia caused by aconitine administration,” Proceedings of the Society for Experimental Biology and Medicine, vol. 64, no. 2, pp. 233–239, 1947.
[2]
D. Scherf, L. J. Morgenbesser, E. J. Nightingale, and K. T. Schaeffeler, “Further studies on mechanism of auricular fibrillation,” Proceedings of the Society for Experimental Biology and Medicine, vol. 73, no. 4, pp. 650–654, 1950.
[3]
G. K. Moe, “On the multiple wavelet hypothesis of atrial fibrillation,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 140, no. 6, pp. 183–188, 1962.
[4]
M. Allessie, W. J. E. P. Lammers, F. I. M. Bonke, and J. Hollen, “Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation,” in Cardiac Electrophysiology and Arrhythmias, Grune and Stratton, D. P. Zipes and J. Jalife, Eds., pp. 265–275, New York, NY, USA, 1985.
[5]
J. F. Swartz, G. Pellersels, J. Silvers, L. Patten, and D. Cervantez, “A catheter-based curative approach to atrial fibrillation in humans,” Circulation, vol. 90, supplement 1, pp. 1–335, 1994.
[6]
M. Ha?ssaguerre, P. Ja?s, D. C. Shah et al., “Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation,” The Journal of Cardiovascular Electrophysiology, vol. 7, no. 12, pp. 1132–1144, 1996.
[7]
J. L. Cox, J. P. Boineau, R. B. Schuessler et al., “Successful surgical treatment of atrial fibrillation: review and clinical update,” Journal of the American Medical Association, vol. 266, no. 14, pp. 1976–1980, 1991.
[8]
P. Ja?s, M. Ha?ssaguerre, D. C. Shah et al., “A focal source of atrial fibrillation treated by discrete radiofrequency ablation,” Circulation, vol. 95, no. 3, pp. 572–576, 1997.
[9]
M. Ha?ssaguerre, P. Ja?s, D. C. Shah et al., “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” The New England Journal of Medicine, vol. 339, no. 10, pp. 659–666, 1998.
[10]
C. F. Tsai, C. T. Tai, M. H. Hsieh et al., “Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation,” Circulation, vol. 102, no. 1, pp. 67–74, 2000.
[11]
C. Hwang, T. J. Wu, R. N. Doshi, C. T. Peter, and P. S. Chen, “Vein of Marshall cannulation for the analysis of electrical activity in patients with focal atrial fibrillation,” Circulation, vol. 101, no. 13, pp. 1503–1505, 2000.
[12]
The AFFIRM First Antiarrhythmic Drug Substudy Investigators, “Maintenance of sinus rhythm in patients with atrial fibrillation: an AFFIRM substudy of the first antiarrhythmic drug,” Journal of the American College of Cardiology, vol. 42, no. 1, pp. 20–29, 2003.
[13]
C. Pappone, G. Oreto, S. Rosanio et al., “Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation,” Circulation, vol. 104, no. 21, pp. 2539–2544, 2001.
[14]
A. Verma, N. F. Marrouche, and A. Natale, “Pulmonary vein antrum isolation: intracardiac echocardiography-guided technique,” The Journal of Cardiovascular Electrophysiology, vol. 15, no. 11, pp. 1335–1340, 2004.
[15]
Y. M. Cha, T. M. Munger, S. J. Asirvatham, P. A. Friedman, K. H. Monahan, and D. L. Packer, “Impact of left atrial size on the outcome of wide area circumferential ablation vs lasso-guided pulmonary vein isolation,” Heart Rhythm, vol. 2, no. 5, p. S192, 2005.
[16]
G. Stabile, P. Turco, V. La Rocca, P. Nocerino, E. Stabile, and A. De Simone, “Is pulmonary vein isolation necessary for curing atrial fibrillation?” Circulation, vol. 108, no. 6, pp. 657–660, 2003.
[17]
K. Lemola, H. Oral, A. Chugh et al., “Pulmonary vein isolation as an end point for left atrial circumferential ablation of atrial fibrillation,” Journal of the American College of Cardiology, vol. 46, no. 6, pp. 1060–1066, 2005.
[18]
H. Oral, M. ?zaydin, H. Tada et al., “Mechanistic significance of intermittent pulmonary vein tachycardia in patients with atrial fibrillation,” The Journal of Cardiovascular Electrophysiology, vol. 13, no. 7, pp. 645–650, 2002.
[19]
K. Nademanee, J. McKenzie, E. Kosar et al., “A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate,” Journal of the American College of Cardiology, vol. 43, no. 11, pp. 2044–2053, 2004.
[20]
H. Oral, A. Chugh, E. Good et al., “Radiofrequency catheter ablation of chronic atrial fibrillation guided by complex electrograms,” Circulation, vol. 115, no. 20, pp. 2606–2612, 2007.
[21]
M. D. O'Neill, P. Ja?s, Y. Takahashi et al., “The stepwise ablation approach for chronic atrial fibrillation—evidence for a cumulative effect,” Journal of Interventional Cardiac Electrophysiology, vol. 16, no. 3, pp. 153–167, 2006.
[22]
R. Cappato, H. Calkins, S. A. Chen et al., “Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation,” Circulation, vol. 3, no. 1, pp. 32–38, 2010.
[23]
H. Calkins, J. Brugada, D. L. Packer et al., “HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation,” Europace, vol. 9, no. 6, pp. 335–379, 2007.
[24]
R. Weerasooriya, P. Khairy, J. Litalien et al., “Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up?” Journal of the American College of Cardiology, vol. 57, no. 2, pp. 160–166, 2011.
[25]
E. Bertaglia, C. Tondo, A. De Simone et al., “Does catheter ablation cure atrial fibrillation? Single-procedure outcome of drug-refractory atrial fibrillation ablation: a 6-year multicentre experience,” Europace, vol. 12, no. 2, pp. 181–187, 2010.
[26]
T. Lewis, A. N. Drury, and H. A. Bulger, “Observations upon atrial flutter and fibrillation. VI. Refractory period and rate of propagation in the auricle: their relation to block in the auricular walls and to flutter etc,” Heart, vol. 8, pp. 84–134, 1921.
[27]
H. E. Hoff and L. A. Geddes, “Cholinergic factor in atrial fibrillation,” Journal of Applied Physiology, vol. 8, no. 2, pp. 177–192, 1955.
[28]
R. Lazzara, B. J. Scherlag, M. J. Robinson, and P. Samet, “Selective in situ parasympathetic control of the canine sinoatrial and atrioventricular nodes,” Circulation Research, vol. 32, no. 3, pp. 393–401, 1973.
[29]
W. C. Randall, “Changing perspectives concerning neural control of the heart,” in Neurocardiology, J. A. Armour and J. L. Ardell, Eds., chapter 1, Oxford University Press, New York, NY, USA, 1994.
[30]
J. L. Ardell, “Structure and function of the mammalian intrinsic cardiac neurons,” in Neurocardiology, J. A. Armour and J. L. Ardell, Eds., chapter 5, Oxford University Press, New York, NY, USA, 1994.
[31]
J. A. Armour, D. A. Murphy, B.-X. Yuan, S. Macdonald, and D. A. Hopkins, “Gross and microscopic anatomy of the human intrinsic cardiac nervous system,” The Anatomical Record, vol. 247, no. 2, pp. 289–298, 1997.
[32]
D. H. Pauza, V. Skripka, N. Pauziene, and R. Stropus, “Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart,” The Anatomical Record, vol. 259, no. 4, pp. 353–382, 2000.
[33]
B. J. Scherlag, W. Yamanashi, U. Patel, R. Lazzara, and W. M. Jackman, “Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation,” Journal of the American College of Cardiology, vol. 45, no. 11, pp. 1878–1886, 2005.
[34]
J. Zhou, B. J. Scherlag, J. Edwards, W. M. Jackman, R. Lazzara, and S. S. Po, “Gradients of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi,” The Journal of Cardiovascular Electrophysiology, vol. 18, no. 1, pp. 83–90, 2007.
[35]
O. F. Sharifov, V. V. Fedorov, G. G. Beloshapko, A. V. Glukhov, A. V. Yushmanova, and L. V. Rosenshtraukh, “Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs,” Journal of the American College of Cardiology, vol. 43, no. 3, pp. 483–490, 2004.
[36]
S. S. Po, B. J. Scherlag, W. S. Yamanashi et al., “Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions,” Heart Rhythm, vol. 3, no. 2, pp. 201–208, 2006.
[37]
B. J. Scherlag, Y. L. Hou, J. Lin et al., “An acute model for atrial fibrillation arising from a peripheral atrial site: evidence for primary and secondary triggers,” The Journal of Cardiovascular Electrophysiology, vol. 19, no. 5, pp. 519–527, 2008.
[38]
Y. Hou, B. J. Scherlag, J. Lin et al., “Ganglionated plexi modulate extrinsic cardiac autonomic nerve input. Effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation,” Journal of the American College of Cardiology, vol. 50, no. 1, pp. 61–68, 2007.
[39]
J. Lin, B. J. Scherlag, Z. Lu et al., “Inducibility of atrial and ventricular arrhythmias along the ligament of marshall: role of autonomic factors,” The Journal of Cardiovascular Electrophysiology, vol. 19, no. 9, pp. 955–962, 2008.
[40]
J. Lin, B. J. Scherlag, J. Zhou et al., “Autonomic mechanism to explain complex fractionated atrial electrograms (CFAE),” The Journal of Cardiovascular Electrophysiology, vol. 18, no. 11, pp. 1197–1205, 2007.
[41]
K. Lemola, D. Chartier, Y. H. Yeh et al., “Pulmonary vein region ablation in experimental vagal atrial fibrillation : role of pulmonary veins versus autonomic ganglia,” Circulation, vol. 117, no. 4, pp. 470–477, 2008.
[42]
Z. Lu, B. J. Scherlag, J. Lin et al., “Atrial fibrillation begets atrial fibrillation: autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing,” Circulation, vol. 1, no. 3, pp. 184–192, 2008.
[43]
E. Patterson, S. S. Po, B. J. Scherlag, and R. Lazzara, “Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation,” Heart Rhythm, vol. 2, no. 6, pp. 624–631, 2005.
[44]
Z. Lu, B. J. Scherlag, J. Lin et al., “Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins: evidence by ablation of ganglionated plexi,” Cardiovascular Research, vol. 84, no. 2, pp. 245–252, 2009.
[45]
C. C. Chou, S. Zhou, A. Y. Tan, H. Hayashi, M. Nihei, and P. S. Chen, “High-density mapping of pulmonary veins and left atrium during ibutilide administration in a canine model of sustained atrial fibrillation,” American Journal of Physiology, vol. 289, no. 6, pp. H2704–H2713, 2005.
[46]
G. Niu, B. J. Scherlag, Z. Lu et al., “An acute experimental model demonstrating 2 different forms of sustained atrial tachyarrhythmias,” Circulation, vol. 2, no. 4, pp. 384–392, 2009.
[47]
M. C. E. F. Wijffels, R. Dorland, and M. A. Allessie, “Pharmacologic cardioversion of chronic atrial fibrillation in the goat by class IA, IC, and III drugs: a comparison between hydroquinidine, cibenzoline, flecainide, and d-sotalol,” The Journal of Cardiovascular Electrophysiology, vol. 10, no. 2, pp. 178–193, 1999.
[48]
D. Li, A. Bénardeau, and S. Nattel, “Contrasting efficacy of dofetilide in differing experimental models of atrial fibrillation,” Circulation, vol. 102, no. 1, pp. 104–112, 2000.
[49]
M. Platt, R. Mandapati, B. J. Scherlag, et al., “Limiting the number and extent of radiofrequency applications to terminate atrial fibrillation and subsequently prevent its inducibility,” Heart Rhythm, vol. 1, article S11, 2004.
[50]
M. Scanavacca, C. F. Pisani, D. Hachul et al., “Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation,” Circulation, vol. 114, no. 9, pp. 876–885, 2006.
[51]
D. Katritsis, E. Giazitzoglou, D. Sougiannis, N. Goumas, G. Paxinos, and A. J. Camm, “Anatomic approach for ganglionic plexi ablation in patients with paroxysmal atrial fibrillation,” The American Journal of Cardiology, vol. 102, no. 3, pp. 330–334, 2008.
[52]
E. Pokushalov, A. Romanov, P. Shugayev et al., “Selective ganglionated plexi ablation for paroxysmal atrial fibrillation,” Heart Rhythm, vol. 6, no. 9, pp. 1257–1264, 2009.
[53]
E. Mikhaylov, A. Kanidieva, N. Sviridova et al., “Outcome of anatomic ganglionated plexi ablation to treat paroxysmal atrial fibrillation: a 3-year follow-up study,” Europace, vol. 13, no. 3, pp. 362–370, 2011.
[54]
M. Scanavacca and E. Sosa, “Catheter ablation techniques for selective cardiac autonomic denervation to treat patients with paroxysmal atrial fibrillation,” Heart Rhythm, vol. 6, no. 9, pp. 1265–1266, 2009.
[55]
M. Hirose, Z. Leatmanoratn, K. R. Laurita, and M. D. Carlson, “Partial vagal denervation increases vulnerability to vagally induced atrial fibrillation,” The Journal of Cardiovascular Electrophysiology, vol. 13, no. 12, pp. 1272–1279, 2002.
[56]
S. Oh, Y. Zhang, S. Bibevski, N. F. Marrouche, A. Natale, and T. N. Mazgalev, “Vagal denervation and atrial fibrillation inducibility: epicardial fat pad ablation does not have long-term effects,” Heart Rhythm, vol. 3, no. 6, pp. 701–708, 2006.
[57]
C. Pappone, V. Santinelli, F. Manguso et al., “Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation,” Circulation, vol. 109, no. 3, pp. 327–334, 2004.
[58]
H. Nakagawa, K. Yokoyama, B. J. Scherlag, et al., “Ablation of autonomic ganglia,” in A Practical Approach to Catheter Ablation of Atrial Fibrillation, H. Calkins, P. Jais, and J. S. Steinberg, Eds., chapter 14, Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2008.
[59]
D. G. Katritsis, E. Giazitzoglou, T. Zografos, E. Pokushalov, S. S. Po, and A. J. Camm, “Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study,” Heart Rhythm, vol. 8, no. 5, pp. 672–678, 2011.
[60]
J. H. McClelland, D. Duke, and R. Reddy, “Preliminary results of a limited thoracotomy: new approach to treat atrial fibrillation,” The Journal of Cardiovascular Electrophysiology, vol. 18, no. 12, pp. 1289–1295, 2007.
[61]
J. R. Mehall, R. M. Kohut Jr., E. W. Schneeberger, T. Taketani, W. H. Merrill, and R. K. Wolf, “Intraoperative epicardial electrophysiologic mapping and isolation of autonomic ganglionic plexi,” Annals of Thoracic Surgery, vol. 83, no. 2, pp. 538–541, 2007.
[62]
N. Matsutani, B. Takase, Y. Ozeki, T. Maehara, and R. Lee, “Minimally invasive cardiothoracic surgery for atrial fibrillation—a combined Japan-US experience,” Circulation Journal, vol. 72, no. 3, pp. 434–436, 2008.
[63]
F. Onorati, A. Curcio, G. Santarpino et al., “Routine ganglionic plexi ablation during Maze procedure improves hospital and early follow-up results of mitral surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 2, pp. 408–418, 2008.
[64]
N. Doll, P. Pritzwald-Stegmann, M. Czesla et al., “Ablation of ganglionic plexi during combined surgery for atrial fibrillation,” Annals of Thoracic Surgery, vol. 86, no. 5, pp. 1659–1663, 2008.
[65]
J. Marshall, “On the development of the great anterior veins in man and mammalian: including an account of certain remnants of foetal structure found in the adult, a comparative view of these great veins in the different mammalian, and an analysis of their occasioanal peculiarities in the adult subject,” Philosophical Transactions of the Royal Society of London Series, vol. 140, pp. 133–169, 1850.
[66]
L. Kaijser and C. Sachs, “Autonomic cardiovascular responses in old age,” Clinical Physiology, vol. 5, no. 4, pp. 347–357, 1985.
[67]
F. M. Smith, A. S. McGuirt, D. B. Hoover, J. A. Armour, and J. L. Ardell, “Chronic decentralization of the heart differentially remodels canine intrinsic cardiac neuron muscarinic receptors,” American Journal of Physiology, vol. 281, no. 5, pp. H1919–H1930, 2001.
[68]
Y. Zhang, B. J. Scherlag, Z. Lu et al., “Comparison of atrial fibrillation inducibility by electrical stimulation of either the extrinsic or the intrinsic autonomic nervous systems,” Journal of Interventional Cardiac Electrophysiology, vol. 24, no. 1, pp. 5–10, 2009.
[69]
Lo L.-W., B. J. Scherlag, H.-Y. Chang, Y.-J. Lin, S.-A. Chen, and S. S. Po, “Long term proarrhythmia after parasympathetic denervation between extrinsic and intrinsic cardiac autonomic nervous system,” Heart Rhythm, vol. 8, no. 5, pp. S264–S265, 2011.
[70]
M. C. E. F. Wijffels, C. J. H. J. Kirchhof, R. Dorland, and M. A. Allessie, “Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats,” Circulation, vol. 92, no. 7, pp. 1954–1968, 1995.
[71]
M. C. E. F. Wijffels, C. J. H. J. Kirchhof, R. Dorland, J. Power, and M. A. Allessie, “Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation,” Circulation, vol. 96, no. 10, pp. 3710–3720, 1997.
[72]
Y. Hou, B. J. Scherlag, J. Lin et al., “Interactive atrial neural network: determining the connections between ganglionated plexi,” Heart Rhythm, vol. 4, no. 1, pp. 56–63, 2007.
[73]
J. Lin, B. J. Scherlag, J. Zhou et al., “Autonomic mechanism to explain complex fractionated atrial electrograms (CFAE),” The Journal of Cardiovascular Electrophysiology, vol. 18, no. 11, pp. 1197–1205, 2007.
[74]
Z. Lu, B. J. Scherlag, J. Lin et al., “Autonomic mechanism for complex fractionated atrial electrograms: evidence by fast Fourier transform analysis,” The Journal of Cardiovascular Electrophysiology, vol. 19, no. 8, pp. 835–842, 2008.
[75]
L. Di Biase, J. D. Burkhardt, P. Mohanty et al., “Left atrial appendage: an underrecognized trigger site of atrial fibrillation,” Circulation, vol. 122, no. 2, pp. 109–118, 2010.
[76]
S. Danik, P. Neuzil, A. d'Avila et al., “Evaluation of catheter ablation of periatrial ganglionic plexi in patients with atrial fibrillation,” The American Journal of Cardiology, vol. 102, no. 5, pp. 578–583, 2008.
[77]
S. S. Po, H. Nakagawa, and W. M. Jackman, “Localization of left atrial ganglionated plexi in patients with AF,” Journal of Cardiovascular Electrophysiology, vol. 20, no. 10, pp. 1186–1189, 2009.
[78]
S. Li, B. J. Scherlag, L. Yu et al., “Low-level vagosympathetic stimulation a paradox and potential new modality for the treatment of focal atrial fibrillation,” Circulation, vol. 2, no. 6, pp. 645–651, 2009.
[79]
L. Yu, B. J. Scherlag, S. Li et al., “Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia,” The Journal of Cardiovascular Electrophysiology, vol. 22, no. 4, pp. 455–463, 2011.
[80]
X. Sheng, B. J. Scherlag, L. Yu et al., “Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation,” Journal of the American College of Cardiology, vol. 57, no. 5, pp. 563–571, 2011.
[81]
Y. Sha, B. J. Scherlag, L. Yu et al., “Low-level right vagal stimulation: anticholinergic and antiadrenergic effects,” The Journal of Cardiovascular Electrophysiology, vol. 22, no. 10, pp. 1147–1153, 2011.
[82]
L. Yu, B. J. Scherlag, Y. Sha, et al., “Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious,” Heart Rhythm, vol. 9, no. 5, pp. 804–809, 2012.
[83]
R. J. Henning and D. R. Sawmiller, “Vasoactive intestinal peptide: cardiovascular effects,” Cardiovascular Research, vol. 49, no. 1, pp. 27–37, 2001.
[84]
M. P. Gallo, R. Levi, R. Ramella et al., “Endothelium-derived nitric oxide mediates the antiadrenergic effect of human vasostatin-1 in rat ventricular myocardium,” American Journal of Physiology, vol. 292, no. 6, pp. H2906–H2912, 2007.
[85]
M. T. Ziolo, M. J. Kohr, and H. Wang, “Nitric oxide signaling and the regulation of myocardial function,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 5, pp. 625–632, 2008.