全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Constrained Network Modularity

DOI: 10.5402/2012/192031

Full-Text   Cite this paper   Add to My Lib

Abstract:

Static representations of protein interactions networks or PIN reflect measurements referred to a variety of conditions, including time. To partially bypass such limitation, gene expression information is usually integrated in the network to measure its “activity level.” In general, the entire PIN modular organization (complexes, pathways) can reveal changes of configuration whose functional significance depends on biological annotation. However, since network dynamics are based on the presence of different conditions leading to comparisons between normal and disease states, or between networks observed sequentially in time, our working hypothesis refers to the analysis of differential networks based on varying modularity and uncertainty. Two popular methods were applied and evaluated, k-core and Q-modularity, over a reference yeast dataset comprising a PIN of literature-curated data obtained from the fusion of heterogeneous measurements sources. While the functional aspect of interest is cell cycle and the corresponding interactions were isolated, the PIN dynamics were externally induced by time-course measured gene expression values, which we consider one of the “modularity drivers.” Notably, due to the nature of such expression values referred to the “just-in-time method,” we could specialize our approach according to three constrained modular configurations then comparatively assessed through local entropy measures. 1. Introduction Despite the fact that research on PIN [1] is quite mature at both methodological (systems biology) and applied (biomedical and clinical bioinformatics) levels, there are still some domains that remain partially unexplored, in particular from an integrative dynamic standpoint. The first attribute, that is, integrative, includes the consideration of complementary omic layers that provide information on causality, for instance (through gene coexpression, transcription factors, microRNAs, etc.). The second attribute, that is, dynamic, aims at investigating differential properties of networks, and it is based on the assessment of the effects of different conditions at which network properties are measured. The field of “differential network biology” has been already explored from a variety of differential conditions, such as expression during drug and stress response [2] or condition-responsive subnetwork identification [3]. Recently, Ideker and Krogan [4] reviewed the field, suggesting new interesting directions. Currently, some of the main limitations that are encountered can be summarized as follows.(i)The available

References

[1]  M. Vidal, “Interactome modeling,” FEBS Letters, vol. 579, no. 8, pp. 1834–1838, 2005.
[2]  L. Cabusora, E. Sutton, A. Fulmer, and C. V. Forst, “Differential network expression during drug and stress response,” Bioinformatics, vol. 21, no. 12, pp. 2898–2905, 2005.
[3]  Z. Guo, Y. Li, X. Gong et al., “Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network,” Bioinformatics, vol. 23, no. 16, pp. 2121–2128, 2007.
[4]  T. Ideker and N. J. Krogan, “Differential network biology,” Molecular Systems Biology, vol. 8, Article ID 565, 2012.
[5]  G. T. Hart, A. K. Ramani, and E. M. Marcotte, “How complete are current yeast and human protein-interaction networks?” Genome Biology, vol. 7, no. 11, article 120, 2006.
[6]  C. Von Mering, R. Krause, B. Snel et al., “Comparative assessment of large-scale data sets of protein-protein interactions,” Nature, vol. 417, no. 6887, pp. 399–403, 2002.
[7]  M. E. Cusick, H. Yu, A. Smolyar et al., “Literature-curated protein interaction datasets,” Nature Methods, vol. 6, no. 1, pp. 39–46, 2009.
[8]  S. Brohée and J. van Helden, “Evaluation of clustering algorithms for protein-protein interaction networks,” BMC Bioinformatics, vol. 7, article 488, p. 119, 2006.
[9]  S. Fortunato and M. Barthélemy, “Resolution limit in community detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 1, pp. 36–41, 2007.
[10]  M. Roswall and C. T. Bergstrom, “An information-theoretic framework for resolving community structure in complex networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7327–7331, 2007.
[11]  A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703, 2009.
[12]  L. D. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas, “Characterization of complex networks: a survey of measurements,” Advances in Physics, vol. 56, no. 1, pp. 167–242, 2007.
[13]  T. Reguly, A. Breitkreutz, L. Boucher et al., “Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae,” Journal of Biology, vol. 5, article 11, 2006.
[14]  P. Durek and D. Walther, “The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles,” BMC Systems Biology, vol. 2, article 100, 2008.
[15]  C. Huthmacher, C. Gille, and H. G. Holzhütter, “Computational analysis of protein-protein interactions in metabolic networks of Escherichia coli and yeast,” Genome informatics. International Conference on Genome Informatics, vol. 18, pp. 162–172, 2007.
[16]  C. Huthmacher, C. Gille, and H. G. Holzhütter, “A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling,” Journal of Theoretical Biology, vol. 252, no. 3, pp. 456–464, 2008.
[17]  I. A. Maraziotis, K. Dimitrakopoulou, and A. Bezerianos, “An in silico method for detecting overlapping functional modules from composite biological networks,” BMC Systems Biology, vol. 2, article 93, 2008.
[18]  J.-F. Rual, K. Venkatesan, T. Hao et al., “Towards a proteome-scale map of the human protein-protein interaction network,” Nature, vol. 437, no. 7062, pp. 1173–1178, 2005.
[19]  P. V. Missiuro, K. Liu, L. Zou et al., “Information Flow Analysis of Interactome Networks,” PLoS Computational Biology, vol. 5, no. 4, article e1000350, 2009.
[20]  A. Travaglione, E. Marras, and E. Capobianco, “Dynamic modularization assessment in affine protein interaction networks,” Biostatistics, Bioinformatics, and Biomathematics, vol. 2, no. 3, pp. 137–156, 2011.
[21]  A.-C. Gavin, P. Aloy, P. Grandi et al., “Proteome survey reveals modularity of the yeast cell machinery,” Nature, vol. 440, no. 7084, pp. 631–636, 2006.
[22]  A. Clauset, “Finding local community structure in networks,” Physical Review E, vol. 72, no. 2, Article ID 026132, pp. 1–6, 2005.
[23]  M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical Review E, vol. 69, Article ID 026113, 2004.
[24]  G. D. Bader and C. W. Hogue, “An automated method for finding molecular complexes in large protein interaction networks,” BMC Bioinformatics, vol. 4, no. 1, pp. 1–27, 2003.
[25]  E. Marras, A. Travaglione, and E. Capobianco, “Sub-modular resolution analysis by network mixture models,” Statistical Applications in Genetics and Molecular Biology, vol. 9, no. 1, article 19, 2010.
[26]  A. N. Kolmogorov, “A new invariant for transitive dynamical systems,” Doklady Akademii Nauk SSSR, vol. 119, pp. 861–864, 1958.
[27]  P. Walters, An Introduction to Ergodic Theory, Springer, New York, NY, USA, 1982.
[28]  J. L. Jensen, “Chaotic dynamical systems with a view towards statistics: a review,” in Networks and Chaos—Statistical and Probabilistic Aspects, O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall, Eds., pp. 201–250, 1993.
[29]  E. Capobianco, “On network entropy and bio-interactome applications,” Journal of Computational Science, vol. 2, no. 2, pp. 144–152, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133