Enamel matrix derivative (EMD), a decellularized porcine extracellular matrix (ECM), is used clinically in periodontal tissue regeneration. Amelogenin, EMD’s principal component, spontaneously assembles into nanospheres in vivo, forming an ECM complex that releases proteolytically cleaved peptides. However, the role of amelogenin or amelogenin peptides in mediating osteoblast response to EMD is not clear. Human MG63 osteoblast-like cells or normal human osteoblasts were treated with recombinant human amelogenin or a 5?kDa tyrosine-rich amelogenin peptide (TRAP) isolated from EMD and the effect on osteogenesis, local factor production, and apoptosis assessed. Treated MG63 cells increased alkaline phosphatase specific activity and levels of osteocalcin, osteoprotegerin, prostaglandin E2, and active/latent TGF-β1, an effect sensitive to the effector and concentration. Primary osteoblasts exhibited similar, but less robust, effects. TRAP-rich 5?kDa peptides yielded more mineralization than rhAmelogenin in osteoblasts in vitro. Both amelogenin and 5?kDa peptides protected MG63s from chelerythrine-induced apoptosis. The data suggest that the 5?kDa TRAP-rich sequence is an active amelogenin peptide that regulates osteoblast differentiation and local factor production and prevents osteoblast apoptosis. 1. Introduction Enamel matrix derivative (EMD) is a decellularized extracellular matrix (ECM) isolated from porcine tooth germs and has been used clinically in a carrier as Emdogain (Institut Straumann AG, Basel, Switzerland) to promote periodontal tissue regeneration, including periodontal ligament, alveolar bone, and cementum [1–3]. It has been suggested that EMD induces periodontal tissue regeneration by mimicking events in normal periodontal tissue development [4]. During tooth formation, enamel matrix proteins are secreted by ameloblasts and Hertwig’s epithelial root sheath. In addition to providing the structural matrix for the developing enamel, these proteins also act as mediators at the epithelial/mesenchymal interface, resulting in formation of periodontal ligament, alveolar bone, and dental cementum [5–7]. EMD not only functions as a scaffolding for cell migration and clot organization, but one or more of its constituents also have biological activity associated with wound repair. In addition to its effects on periodontal bone formation, EMD has been applied to long bone defects, increasing de novo trabecular bone formation [8]. It has also been used to heal acute and chronic skin wounds, increasing the amount of granulation tissue and
References
[1]
C. D. R. Kalpidis and M. P. Ruben, “Treatment of intrabony periodontal defects with enamel matrix derivative: a literature review,” Journal of Periodontology, vol. 73, no. 11, pp. 1360–1376, 2002.
[2]
E. Venezia, M. Goldstein, B. D. Boyan, and Z. Schwartz, “The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis,” Critical Reviews in Oral Biology and Medicine, vol. 15, no. 6, pp. 382–402, 2004.
[3]
M. Esposito, M. G. Grusovin, N. Papanikolaou, P. Coulthard, and H. V. Worthington, “Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD003875, 2009.
[4]
S. Gestrelius, S. P. Lyngstadaas, and L. Hammarstr?m, “Emdogain—periodontal regeneration based on biomimicry,” Clinical oral investigations, vol. 4, no. 2, pp. 120–125, 2000.
[5]
P. D. A. Owens, “A light and electron microscopic study of the early stages of root surface formation in molar teeth in the rat,” Archives of Oral Biology, vol. 24, no. 12, pp. 901–907, 1979.
[6]
D. D. Bosshardt and A. Nanci, “Hertwig's epithelial root sheath, enamel matrix proteins, and initiation of cementogenesis in porcine teeth,” Journal of Clinical Periodontology, vol. 31, no. 3, pp. 184–192, 2004.
[7]
H. C. Slavkin, P. Bringas Jr., C. Bessem et al., “Hertwig's epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless, chemically-defined medium,” Journal of Periodontal Research, vol. 24, no. 1, pp. 28–40, 1989.
[8]
A. Sculean, P. Windisch, D. Szendr?i-Kiss et al., “Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects,” Journal of Periodontology, vol. 79, no. 10, pp. 1991–1999, 2008.
[9]
U. Mirastschijski, D. Konrad, E. Lundberg, S. P. Lyngstadaas, L. N. Jorgensen, and M. S. ?gren, “Effects of a topical enamel matrix derivative on skin wound healing,” Wound Repair and Regeneration, vol. 12, no. 1, pp. 100–108, 2004.
[10]
J. D. Termine, A. B. Belcourt, and P. J. Christner, “Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel,” Journal of Biological Chemistry, vol. 255, no. 20, pp. 9760–9768, 1980.
[11]
P. Chadwick and C. Acton, “The use of amelogenin protein in the treatment of hard-to-heal wounds,” British Journal of Nursing, vol. 18, no. 6, pp. S22–S24, 2009.
[12]
M. Romanelli, E. Kaha, H. Stege et al., “Effect of amelogenin extracellular matrix protein and compression on hard-to-heal venous leg ulcers: follow-up data,” Journal of Wound Care, vol. 17, no. 1, pp. 17–23, 2008.
[13]
S. Delgado, M. Girondot, and J.-Y. Sire, “Molecular evolution of amelogenin in mammals,” Journal of Molecular Evolution, vol. 60, no. 1, pp. 12–30, 2005.
[14]
M. Zeichner-David, “Is there more to enamel matrix proteins than biomineralization?” Matrix Biology, vol. 20, no. 5-6, pp. 307–316, 2001.
[15]
P. H. Krebsbach, S. K. Lee, Y. Matsuki, C. A. Kozak, K. M. Yamada, and Y. Yamada, “Full-length sequence, localization, and chromosomal mapping of ameloblastin: a novel tooth-specific gene,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4431–4435, 1996.
[16]
C.-C. Hu, M. Fukae, T. Uchida et al., “Cloning and characterization of porcine enamelin mRNAs,” Journal of Dental Research, vol. 76, no. 11, pp. 1720–1729, 1997.
[17]
A. G. Fincham, J. Moradian-Oldak, and J. P. Simmer, “The structural biology of the developing dental enamel matrix,” Journal of Structural Biology, vol. 126, no. 3, pp. 270–299, 1999.
[18]
H. B. Wen, A. G. Fincham, and J. Moradian-Oldak, “Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy,” Matrix Biology, vol. 20, no. 5-6, pp. 387–395, 2001.
[19]
J. Moradian-Oldak, J. Tan, and A. G. Fincham, “Interaction of amelogenin with hydroxyapatite crystals: an adherence effect through amelogenin molecular self-association,” Biopolymers, vol. 46, no. 4, pp. 225–238, 1998.
[20]
H. B. Wen, J. Moradian-Oldak, W. Leung, P. Bringas Jr., and A. G. Fincham, “Microstructures of an amelogenin gel matrix,” Journal of Structural Biology, vol. 126, no. 1, pp. 42–51, 1999.
[21]
S. J. Brookes, J. Kirkham, R. C. Shore, S. R. Wood, I. Slaby, and C. Robinson, “Amelin extracellular processing and aggregation during rat incisor amelogenesis,” Archives of Oral Biology, vol. 46, no. 3, pp. 201–208, 2001.
[22]
A. Veis, “Amelogenin gene splice products: potential signaling molecules,” Cellular and Molecular Life Sciences, vol. 60, no. 1, pp. 38–55, 2003.
[23]
A. Veis, K. Tompkins, K. Alvares et al., “Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo,” Journal of Biological Chemistry, vol. 275, no. 52, pp. 41263–41272, 2000.
[24]
K. Tompkins, K. Alvares, A. George, and A. Veis, “Two related low molecular mass polypeptide isoforms of amelogenin have distinct activities in mouse tooth germ differentiation in vitro,” Journal of Bone and Mineral Research, vol. 20, no. 2, pp. 341–349, 2005.
[25]
R. E. Grayson, Y. Yamakoshi, E. J. Wood, and M. S. ?gren, “The effect of the amelogenin fraction of enamel matrix proteins on fibroblast-mediated collagen matrix reorganization,” Biomaterials, vol. 27, no. 15, pp. 2926–2933, 2006.
[26]
S. Lacerda-Pinheiro, N. Jegat, D. Septier et al., “Early in vivo and in vitro effects of amelogenin gene splice products on pulp cells,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 232–238, 2006.
[27]
M. Zeichner-David, L.-S. Chen, Z. Hsu, J. Reyna, J. Caton, and P. Bringas, “Amelogenin and ameloblastin show growth-factor like activity in periodontal ligament cells,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 244–253, 2006.
[28]
A. G. Fincham and J. Moradian-Oldak, “Amelogenin post-translational modifications: carboxy-terminal processing and the phosphorylation of bovine and porcine “TRAP” and “LRAP” amelogenins,” Biochemical and Biophysical Research Communications, vol. 197, no. 1, pp. 248–255, 1993.
[29]
A. Mumulidu, B. Hildebrand, B. Fabi et al., “Purification and analysis of a 5 kDa component of enamel matrix derivative,” Journal of Chromatography B, vol. 857, no. 2, pp. 210–218, 2007.
[30]
Z. Schwartz, D. L. Carnes Jr., R. Pulliam et al., “Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 219 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells,” Journal of Periodontology, vol. 71, no. 8, pp. 1287–1296, 2000.
[31]
J. C. Rincon, Y. Xiao, W. G. Young, and P. M. Bartold, “Enhanced proliferation, attachment and osteopontin expression by porcine periodontal cells exposed to Emdogain,” Archives of Oral Biology, vol. 50, no. 12, pp. 1047–1054, 2005.
[32]
S. H?gewald, N. Pischon, P. Jawor, J.-P. Bernimoulin, and B. Zimmermann, “Effects of enamel matrix derivative on proliferation and differentiation of primary osteoblasts,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 98, no. 2, pp. 243–249, 2004.
[33]
J. van den Dolder, A. P. G. Vloon, and J. A. Jansen, “The effect of Emdogain on the growth and differentiation of rat bone marrow cells,” Journal of Periodontal Research, vol. 41, no. 5, pp. 471–476, 2006.
[34]
D. R. Davenport, J. M. Mailhot, J. C. Wataha, M. A. Billman, M. M. Sharawy, and M. K. Shrout, “Effects of enamel matrix protein application on the viability, proliferation, and attachment of human periodontal ligament fibroblasts to diseased root surfaces in vitro,” Journal of Clinical Periodontology, vol. 30, no. 2, pp. 125–131, 2003.
[35]
R. J. Miron, D. D. Bosshardt, E. Hedbom et al., “Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation,” Journal of Periodontology, vol. 83, no. 7, pp. 936–947, 2011.
[36]
H. M. Grandin, A. C. Gemperli, and M. Dard, “Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning,” Tissue Engineering B, vol. 18, no. 3, pp. 181–202, 2012.
[37]
K. Bertl, N. An, C. Bruckmann et al., “Effects of enamel matrix derivative on proliferation/viability, migration, and expression of angiogenic factor and adhesion molecules in endothelial cells in vitro,” Journal of Periodontology, vol. 80, no. 10, pp. 1622–1630, 2009.
[38]
F. Carinci, A. Piattelli, L. Guida et al., “Effects of Emdogain on osteoblast gene expression,” Oral Diseases, vol. 12, no. 3, pp. 329–342, 2006.
[39]
S. Gestrelius, C. Andersson, D. Lidstr?m, L. Hammarstr?m, and M. Somerman, “In vitro studies on periodontal ligament cells and enamel matrix derivative,” Journal of Clinical Periodontology, vol. 24, no. 9, pp. 685–692, 1997.
[40]
Z. Schwartz, R. Dennis, L. Bonewald, L. Swain, R. Gomez, and B. D. Boyan, “Differential regulation of prostaglandin E2 synthesis and phospholipase A2 activity by 1,25-(OH)2D3 in three osteoblast-like cell lines (MC-3T3- E1, ROS 17/2.8, and MG-63),” Bone, vol. 13, no. 1, pp. 51–58, 1992.
[41]
J. Y. Martin, D. D. Dean, D. L. Cochran, J. Simpson, B. D. Boyan, and Z. Schwartz, “Proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) cultured on previously used titanium surfaces,” Clinical Oral Implants Research, vol. 7, no. 1, pp. 27–37, 1996.
[42]
C. A. Gregory, W. G. Gunn, A. Peister, and D. J. Prockop, “An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction,” Analytical Biochemistry, vol. 329, no. 1, pp. 77–84, 2004.
[43]
S. Yamamoto, K. Seta, C. Morisco, S. F. Vatner, and J. Sadoshima, “Chelerythrine rapidly induces apoptosis through generation of reactive oxygen species in cardiac myocytes,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 10, pp. 1829–1848, 2001.
[44]
M. Zhong, L. J. Wike, J. T. Ryaby, D. H. Carney, B. D. Boyan, and Z. Schwartz, “Thrombin peptide TP508 prevents nitric oxide mediated apoptosis in chondrocytes in the endochondral developmental pathway,” Biochimica et Biophysica Acta, vol. 1783, no. 1, pp. 12–22, 2008.
[45]
J. F. Guest, E. Nagy, E. Sladkevicius, P. Vowden, and P. Price, “Modelling the relative cost-effectiveness of amelogenin in non-healing venous leg ulcers,” Journal of Wound Care, vol. 18, no. 5, pp. 216–224, 2009.
[46]
D. D. Dean, C. H. Lohmann, V. L. Sylvia et al., “Effect of porcine fetal enamel matrix derivative on chondrocyte proliferation, differentiation, and local factor production is dependent on cell maturation state,” Cells Tissues Organs, vol. 171, no. 2-3, pp. 117–127, 2002.
[47]
J. P. Simmer and J. C.-C. Hu, “Expression, structure, and function of enamel proteinases,” Connective Tissue Research, vol. 43, no. 2-3, pp. 441–449, 2002.
[48]
C. Robinson, S. J. Brookes, R. C. Shore, and J. Kirkham, “The developing enamel matrix: nature and function,” European Journal of Oral Sciences, vol. 106, supplement 1, pp. 282–291, 1998.
[49]
C. W. Gibson, Y. Li, B. Daly et al., “The leucine-rich amelogenin peptide alters the amelogenin null enamel phenotype,” Cells Tissues Organs, vol. 189, no. 1–4, pp. 169–174, 2009.
[50]
R. Warotayanont, D. Zhu, M. L. Snead, and Y. Zhou, “Leucine-rich amelogenin peptide induces osteogenesis in mouse embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 367, no. 1, pp. 1–6, 2008.
[51]
R. Warotayanont, B. Frenkel, M. L. Snead, and Y. Zhou, “Leucine-rich amelogenin peptide induces osteogenesis by activation of the Wnt pathway,” Biochemical and Biophysical Research Communications, vol. 387, no. 3, pp. 558–563, 2009.
[52]
F. Boabaid, C. W. Gibson, M. A. Kuehl et al., “Leucine-rich amelogenin peptide: a candidate signaling molecule during cementogenesis,” Journal of Periodontology, vol. 75, no. 8, pp. 1126–1136, 2004.
[53]
H. L. Viswanathan, J. E. Berry, B. L. Foster et al., “Amelogenin: a potential regulator of cementum-associated genes,” Journal of Periodontology, vol. 74, no. 10, pp. 1423–1431, 2003.
[54]
T. Iwata, Y. Morotome, T. Tanabe, M. Fukae, I. Ishikawa, and S. Oida, “Noggin blocks osteoinductive activity of porcine enamel extracts,” Journal of Dental Research, vol. 81, no. 6, pp. 387–391, 2002.
[55]
E. C. Swanson, H. K. Fong, B. L. Foster et al., “Amelogenins regulate expression of genes associated with cementoblasts in vitro,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 239–243, 2006.
[56]
A. Gurpinar, M. A. Onur, Z. C. Cehreli, and F. Tasman, “Effect of enamel matrix derivative on mouse fibroblasts and marrow stromal osteoblasts,” Journal of Biomaterials Applications, vol. 18, no. 1, pp. 25–33, 2003.
[57]
A. Javed, H. Chen, and F. Y. Ghori, “Genetic and transcriptional control of bone formation,” Oral and Maxillofacial Surgery Clinics of North America, vol. 22, no. 3, pp. 283–293, 2010.
[58]
L. J. Raggatt and N. C. Partridge, “Cellular and molecular mechanisms of bone remodeling,” Journal of Biological Chemistry, vol. 285, no. 33, pp. 25103–25108, 2010.
[59]
L. F. Bonewald and S. L. Dallas, “Role of active and latent transforming growth Factor,B in bone formation,” Journal of Cellular Biochemistry, vol. 55, no. 3, pp. 350–357, 1994.
[60]
X. Li, C. C. Pilbeam, L. Pan, R. M. Breyer, and L. G. Raisz, “Effects of prostaglandin E2 on gene expression in primary osteoblastic cells from prostaglandin receptor knockout mice,” Bone, vol. 30, no. 4, pp. 567–573, 2002.
[61]
Y. Kobayashi, N. Udagawa, and N. Takahashi, “Action of RANKL and OPG for osteoclastogenesis,” Critical Reviews in Eukaryotic Gene Expression, vol. 19, no. 1, pp. 61–72, 2009.
[62]
B. F. Boyce and L. Xing, “Functions of RANKL/RANK/OPG in bone modeling and remodeling,” Archives of Biochemistry and Biophysics, vol. 473, no. 2, pp. 139–146, 2008.
[63]
R. A. Kanaan and L. A. Kanaan, “Transforming growth factor β1, bone connection,” Medical Science Monitor, vol. 12, no. 8, pp. RA164–RA169, 2006.
[64]
K. Janssens, P. Ten Dijke, S. Janssens, and W. van Hul, “Transforming growth factor-β1 to the bone,” Endocrine Reviews, vol. 26, no. 6, pp. 743–774, 2005.
[65]
N. Chegini, “The role of growth factors in peritoneal healing: transforming growth factor beta (TGF-beta),” The European Journal of Surgery, no. 577, pp. 17–23, 1997.
[66]
K. R. Cutroneo, “TGF-β-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring,” Wound Repair and Regeneration, vol. 15, supplement 1, pp. S54–S60, 2007.
[67]
H. Kawaguchi, C. C. Pilbeam, J. R. Harrison, and L. G. Raisz, “The role of prostaglandins in the regulation of bone metabolism,” Clinical Orthopaedics and Related Research, no. 313, pp. 36–46, 1995.
[68]
S. Yoneda, D. Itoh, S. Kuroda et al., “The effects of enamel matrix derivative (EMD) on osteoblastic cells in culture and bone regeneration in a rat skull defect,” Journal of Periodontal Research, vol. 38, no. 3, pp. 333–342, 2003.
[69]
N. H. M. Heng, P. D. N'Guessan, B.-M. Kleber, J.-P. Bernimoulin, and N. Pischon, “Enamel matrix derivative induces connective tissue growth factor expression in human osteoblastic cells,” Journal of Periodontology, vol. 78, no. 12, pp. 2369–2379, 2007.
[70]
E. Shimizu, R. Saito, Y. Nakayama et al., “Amelogenin stimulates bone sialoprotein (BSP) expression through fibroblast growth factor 2 response element and transforming growth factor-β1 activation element in the promoter of the BSP gene,” Journal of Periodontology, vol. 76, no. 9, pp. 1482–1489, 2005.
[71]
T. Kawase, K. Okuda, H. Yoshie, and D. M. Burns, “Anti-TGF-β antibody blocks enamel matrix derivative-induced upregulation of p21WAF1/cip1 and prevents its inhibition of human oral epithelial cell proliferation,” Journal of Periodontal Research, vol. 37, no. 4, pp. 255–262, 2002.
[72]
S. Suzuki, T. Nagano, Y. Yamakoshi et al., “Enamel matrix derivative gel stimulates signal transduction of BMP and TGF-β,” Journal of Dental Research, vol. 84, no. 6, pp. 510–514, 2005.
[73]
M. M. L. Deckers, M. Karperien, C. van der Bent, T. Yamashita, S. E. Papapoulos, and C. W. G. M. L?wik, “Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation,” Endocrinology, vol. 141, no. 5, pp. 1667–1674, 2000.
[74]
M. Aida, T. Irié, T. Aida, and T. Tachikawa, “Expression of protein kinases C βI, βII, and VEGF during the differentiation of enamel epithelium in tooth development,” Journal of Dental Research, vol. 84, no. 3, pp. 234–239, 2005.
[75]
T. Tsuboi, S. Mizutani, M. Nakano, K. Hirukawa, and A. Togari, “FGF-2 regulates enamel and dentine formation in mouse tooth germ,” Calcified Tissue International, vol. 73, no. 5, pp. 496–501, 2003.