全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamic Change of VOR and Otolith Function in Intratympanic Gentamicin Treatment for Ménière’s Disease: Case Report and Review of the Literature

DOI: 10.1155/2013/168391

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intratympanic gentamicin treatment (IGT) is an evidence-based therapeutic option for recurrent vertigo attacks in Ménière’s disease (MD). Today, in MD it is possible to monitor changes of vestibular receptor function, induced by IGT, with objective test methods such as the video head impulse test (vHIT) and cervical and ocular vestibular evoked myogenic potentials (cVEMP, oVEMP) in a dynamic, time-and frequency-dependent manner. We report on a 65-year-old female patient with recurrent vertigo attacks in a right-sided MD, where receptor function was followed up before and up to 4 weeks after IGT (time dynamic). Quantitative changes of vestibular function (frequency dynamic) were detected with bithermal calorics and vHIT, with air-conducted sound (ACS) cVEMP and bone-conducted vibration (BCV) oVEMP at 500?Hz. The horizontal vestibuloocular reflex (hVOR) gain in vHIT decreased successively until the 4th week with the appearance of catch-up covert and catch-up overt refixation saccades, and side asymmetry increased in caloric testing. Saccular function was extinguished within 4 weeks, whereas utricular function was diminished after 4 weeks. Monitoring vestibular receptor function with objective test methods provides a quantitative insight into the dynamic activity of vestibular function and is therefore applicable in order to adjust IGT regimen at different therapeutic stages. 1. Introduction Gentamicin plays an important role in otorhinolaryngology due to its ototoxic side effects. Intravenous administration may cause severe uni- or bilateral vestibular loss with imbalance and oscillopsia. If administered intratympanically, gentamicin vestibulotoxicity can be used to eliminate recurrent vertigo attacks in cases of intractable Ménière’s disease (MD) [1–3]. For many patients, even at a higher age, intratympanic gentamicin treatment (IGT) is an evidence-based therapeutic option to restore quality of life [1, 2]. In IGT either a partial deficit or a complete loss of vestibular receptor function may occur. Today, canal and otolith functions are capable of being measured objectively and quantitatively by means of the video head impulse test (vHIT), cervical and ocular vestibular evoked myogenic potentials (oVEMP, cVEMP) [4–7]. These new tests provide the opportunity to monitor IGT-induced changes of vestibular function. Additional methods such as subjective visual vertical (SVV) and caloric irrigation may be helpful to confirm the functional status. When these tests are performed in a follow-up setting, a dynamic insight in receptor function with regard to time

References

[1]  B. Pullens and P. P. van Benthem, “Intratympanic gentamicin for Ménière's disease or syndrome,” Cochrane Database of Systematic Reviews, vol. 3, Article ID CD008234, 2011.
[2]  S. H. Chia, A. C. Gamst, J. P. Anderson, and J. P. Harris, “Intratympanic gentamicin therapy for Ménière's disease: a meta-analysis,” Otology and Neurotology, vol. 25, no. 4, pp. 544–552, 2004.
[3]  T. P. Hirvonen, L. B. Minor, T. E. Hullar, and J. P. Carey, “Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla,” Journal of Neurophysiology, vol. 93, no. 2, pp. 643–655, 2005.
[4]  J. G. Colebatch and G. M. Halmagyi, “Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation,” Neurology, vol. 42, no. 8, pp. 1635–1636, 1992.
[5]  N. P. Todd, I. S. Curthoys, S. T. Aw, et al., “Vestibular evoked ocular responses to air- (AC) and bone-conducted (BC) sound I: eye movements and timing in relation to vestibular evoked peri-ocular potentials (VEPP),” Journal of Vestibular Research, vol. 14, pp. 123–124, 2004.
[6]  K. Bartl, N. Lehnen, S. Kohlbecher, and E. Schneider, “Head impulse testing using video-oculography,” Annals of the New York Academy of Sciences, vol. 1164, pp. 331–333, 2009.
[7]  K. P. Weber, H. G. MacDougall, G. M. Halmagyi, and I. S. Curthoys, “Impulsive testing of semicircular-canal function using video-oculography,” Annals of the New York Academy of Sciences, vol. 1164, pp. 486–491, 2009.
[8]  L. Manzari, A. Tedesco, A. M. Burgess, and I. S. Curthoys, “Ocular vestibular-evoked myogenic potentials to bone-conducted vibration in superior vestibular neuritis show utricular function,” Otolaryngology—Head and Neck Surgery, vol. 143, no. 2, pp. 274–280, 2010.
[9]  I. S. Curthoys, “A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli,” Clinical Neurophysiology, vol. 121, no. 2, pp. 132–144, 2010.
[10]  M. S. Welgampola and J. P. Carey, “Waiting for the evidence: VEMP testing and the ability to differentiate utricular versus saccular function,” Otolaryngology—Head and Neck Surgery, vol. 143, no. 2, pp. 281–283, 2010.
[11]  A. Bl?dow, S. Pannasch, and L. E. Walther, “Detection of isolated covert saccades with the video head impulse test in peripheral vestibular disorders,” Auris Nasus Larynx, 2012.
[12]  L. Manzari, A. M. Burgess, H. G. MacDougall, A. P. Bradshaw, and I. S. Curthoys, “Rapid fluctuations in dynamic semicircular canal function in early Ménière’s disease,” European Archives of Otorhinolaryngology, vol. 268, pp. 637–639, 2011.
[13]  H. G. MacDougall, K. P. Weber, L. A. McGarvie, G. M. Halmagyi, and I. S. Curthoys, “The video head impulse test: diagnostic accuracy in peripheral vestibulopathy,” Neurology, vol. 73, no. 14, pp. 1134–1141, 2009.
[14]  K. P. Weber, S. T. Aw, M. J. Todd, L. A. McGarvie, I. S. Curthoys, and G. M. Halmagyi, “Horizontal head impulse test detects gentamicin vestibulotoxicity,” Neurology, vol. 72, no. 16, pp. 1417–1424, 2009.
[15]  J. P. Carey, T. Hirvonen, G. C. Y. Peng et al., “Changes in the angular vestibulo-ocular reflex after a single dose of intratympanic gentamicin for Ménière's disease,” Annals of the New York Academy of Sciences, vol. 956, pp. 581–584, 2002.
[16]  R. L. Taylor, A. A. Wijewardene, W. P. Gibson, D. A. Black, G. M. Halmagyi, and M. S. Welgampola, “The vestibular evoked-potential profile of Ménière's disease,” Clinical Neurophysiology, vol. 122, pp. 1256–1263, 2011.
[17]  Y. H. Young, T. W. Huang, and P. W. Cheng, “Assessing the stage of Ménière's disease using vestibular evoked myogenic potentials,” Archives of Otolaryngology, vol. 129, no. 8, pp. 815–818, 2003.
[18]  S. M. Winters, T. Campschroer, W. Grolman, and S. F. Klis, “Ocular vestibular evoked myogenic potentials in response to air-conducted sound in Ménière's disease,” Otology & Neurotology, vol. 32, pp. 1273–1280, 2011.
[19]  L. Manzari, A. R. Tedesco, A. M. Burgess, and I. S. Curthoys, “Ocular and cervical vestibular-evoked myogenic potentials to bone conducted vibration in Ménière's disease during quiescence vs during acute attacks,” Clinical Neurophysiology, vol. 121, no. 7, pp. 1092–1101, 2010.
[20]  L. Manzari, H. G. Mac Dougall, A. M. Burgess, and I. S. Curthoys, “New, fast, clinical vestibular tests identify whether a vertigo attack is due to early Ménière's disease or vestibular neuritis,” Laryngoscope, 2012.
[21]  L. N. Ozluoglu, G. Akkuzu, N. Ozgirgin, and E. Tarhan, “Reliability of the vestibular evoked myogenic potential test in assessing intratympanic gentamicin therapy in Meniere's disease,” Acta Oto-Laryngologica, vol. 128, no. 4, pp. 422–426, 2008.
[22]  K. Helling, U. Sch?nfeld, and A. H. Clarke, “Treatment of Ménière's disease by low-dosage intratympanic gentamicin application: effect on otolith function,” Laryngoscope, vol. 117, no. 12, pp. 2244–2250, 2007.
[23]  S. Gode, N. Celebisoy, A. Akyuz, et al., “Single-shot, low-dose intratympanic gentamicin in Ménière disease: role of vestibular-evoked myogenic potentials and caloric test in the prediction of outcome,” American Journal of Otolaryngology, vol. 32, pp. 412–416, 2011.
[24]  T. H. Yang, S. H. Liu, and Y. H. Young, “Evaluation of guinea pig model for ocular and cervical vestibular-evoked myogenic potentials for vestibular function test,” Laryngoscope, vol. 120, no. 9, pp. 1910–1917, 2010.
[25]  M. Magnusson, S. Padoan, M. Karlberg, and R. Johansson, “Delayed onset of ototoxic effects of gentamicin in patients with Meniere's disease,” Acta Oto-Laryngologica, no. 485, pp. 120–122, 1991.
[26]  H. J. Park, A. A. Migliaccio, C. C. Della Santina, L. B. Minor, and J. P. Carey, “Search-coil head-thrust and caloric tests in Ménière’s disease,” Acta Oto-Laryngologica, vol. 125, pp. 852–857, 2005.
[27]  F. O. Black, R. J. Peterka, and S. M. Elardo, “Vestibular reflex changes following aminoglycoside induced ototoxicity,” Laryngoscope, vol. 97, no. 5, pp. 582–586, 1987.
[28]  J. S. Sandhu, R. Low, P. A. Rea, and N. C. Saunders, “Altered frequency dynamics of cervical and ocular vestibular evoked myogenic potentials in patients with Ménière's disease,” Otology & Neurotology, vol. 33, pp. 444–449, 2012.
[29]  S. W. Kuo, T. H. Yang, and Y. H. Young, “Changes in vestibular evoked myogenic potentials after Ménière's attacks,” Annals of Otology, Rhinology, and Laryngology, vol. 114, pp. 717–721, 2005.
[30]  K. D. Nguyen, L. B. Minor, C. C. Della Santina, and J. P. Carey, “Vestibular function and vertigo control after intratympanic gentamicin for Ménière's disease,” Audiology and Neurotology, vol. 14, no. 6, pp. 361–372, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133