全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Intermittent Positive Pressure Ventilation on Depth of Anaesthesia during and after Isoflurane Anaesthesia in Sulphur-Crested Cockatoos (Cacatua galerita galerita)

DOI: 10.1155/2014/250523

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aimed to determine the effect of intermittent positive pressure ventilation (IPPV) on the depth of inhalation anaesthesia in parrots. Anaesthesia was induced with 3.0% isoflurane in six Sulphur-crested Cockatoos (Cacatua galerita galerita) and maintained using either 1.5% or 3.0% during spontaneous ventilation (SV) or IPPV at 6 (IPPV-6) or 12 (IPPV-12) breaths per minute. The time taken for the appearance of somatic reflexes and the return of SV after IPPV was recorded. During recovery, the body jerk, beak, eye, and shivering reflexes appeared after 126 ± 27?s, 133 ± 26?s, 165 ± 34?s, and 165 ± 44?s, respectively. All cockatoos developed apnoea after IPPV-12 and only some did after IPPV-6. Return of SV after IPPV-12 was delayed compared to IPPV-6. Recovery times after the SV runs were significantly different between 1.5% and 3.0% isoflurane anaesthesia. Similarly, after IPPV, the recovery times were significantly different between 1.5% and 3.0% isoflurane anaesthesia. Recovery times after 3.0% inhaled isoflurane were longer than those of 1.5% inhaled isoflurane. In conclusion, cockatoos recovering from isoflurane anaesthesia are likely to exhibit body jerk, beak, eye, and shivering reflexes in that order. IPPV increases the depth of anaesthesia in a rate and dose-related manner and prolongs recovery. 1. Introduction Isoflurane continues to be a popular anaesthetic agent for birds [1–3], due to its relative safety and effectiveness [4], and changes in the depth of anaesthesia and recovery can be easily and quickly controlled [5, 6]. Its faster induction and recovery, relative sparing effect on cardiovascular function and cerebral blood flow autoregulation, and negligible metabolism make isoflurane useful in the anaesthetic management of debilitated, aged, or exotic veterinary patients [3, 7]. Most of it is eliminated via the lungs with only a minute fraction metabolised in the liver [8–10]. Other anaesthetic inhalation agents such as sevoflurane [5, 6, 8, 9, 11–20] and desflurane [18] may have slight advantages over isoflurane; however, associated costs are considerable which limits their widespread use in veterinary practice. The basic principles of anaesthetic management that govern mammalian anaesthesia also apply to birds, although specific anatomical and physiological differences must be considered [4, 9, 10, 21]. Because of the anatomy and structure of the avian respiratory system, even healthy birds may not be properly oxygenated when anaesthetised and placed in dorsal recumbence, so IPPV is recommended [10, 22]. Data on the effects of

References

[1]  D. J. Heard, “Avian anesthesia: present and future trends,” in Proceedings of the Annual Association of Avian Veterinarians, pp. 117–122, 1997.
[2]  D. J. Heard, “Avian respiratory anatomy and physiology,” Seminars in Avian and Exotic Pet Medicine, vol. 6, no. 4, pp. 172–179, 1997.
[3]  S. Chemonges, “Effect of intermittent positive pressure ventilation (IPPV) on acid-base balance and plasma electrolytes during isoflurane anaesthesia in sulphur-crested cockatoos (Cacatua galerita galerita),” International Journal of Animal and Veterinary Advances, vol. 4, no. 6, pp. 351–357, 2012.
[4]  T. G. Curro, “Anesthesia of pet birds: review article,” Seminars in Avian and Exotic Pet Medicine, vol. 7, no. 1, pp. 10–21, 1998.
[5]  S. M. Jaensch, L. Cullen, and S. R. Raidal, “Comparison of endotracheal, caudal thoracic air sac, and clavicular air sac administration of isoflurane in sulphur-crested cockatoos (Cacatua galerita),” Journal of Avian Medicine and Surgery, vol. 15, no. 3, pp. 170–177, 2001.
[6]  O. Martin-Jurado, R. Vogt, A. P. N. Kutter, R. Bettschart-Wolfensberger, and J. Hatt, “Effect of inhalation of isoflurane at end-tidal concentrations greater than, equal to, and less than the minimum anesthetic concentration on bispectral index in chickens,” The American Journal of Veterinary Research, vol. 69, no. 10, pp. 1254–1261, 2008.
[7]  J. W. Ludders, “Advantages and guidelines for using isoflurane,” Veterinary Clinics of North America, vol. 22, no. 2, pp. 328–331, 1992.
[8]  D. Plumb, Veterinary Drug Handbook, Iowa State University Press, Ames, Iowa, USA, 1999.
[9]  S. M. Jaensch, L. Cullen, and S. R. Raidal, “Air sac functional anatomy of the sulphur-crested cockatoo (Cacatua galerita) during isoflurane anesthesia,” Journal of Avian Medicine and Surgery, vol. 16, no. 1, pp. 2–9, 2002.
[10]  S. Chemonges and L. J. Filippich, “Intermittent positive pressure ventilation versus spontaneous ventilation during isoflurane anaesthesia in sulphur-crested cockatoos,” in Australian Committee Association Avian Veterinarians, pp. 53–55, 1999.
[11]  S. Hirata, T. Enoki, R. Kitamura, V. H. Vinh, K. Nakamura, and K. Mori, “Effects of isoflurane on receptor-operated Ca2+ channels in rat aortic smooth muscle,” The British Journal of Anaesthesia, vol. 81, no. 4, pp. 578–583, 1998.
[12]  J. W. Carpenter and D. E. Mason, “Use of heated, artificial ventilator in exotic animal anesthesia,” Exotic DVM, vol. 3, no. 3, pp. 15–17, 2001.
[13]  G. R. Pettifer, J. Cornick-Seahorn, J. A. Smith, G. Hosgood, and T. N. Tully Jr., “The comparative cardiopulmonary effects of spontaneous and controlled ventilation by using the Hallowell EMC Anesthesia WorkStation in Hispaniolan Amazon parrots (Amazona ventralis),” Journal of Avian Medicine and Surgery, vol. 16, no. 4, pp. 268–276, 2002.
[14]  T. M. Edling, “Advances in anesthesia monitoring in birds, reptiles and small mammals,” Exotic DVM, vol. 5, no. 3, pp. 15–20, 2003.
[15]  I. Langlois, R. C. Harvey, M. P. Jones, and J. Schumacher, “Cardiopulmonary and anesthetic effects of isoflurane and propofol in Hispaniolan Amazon parrots (Amazona ventralis),” Journal of Avian Medicine and Surgery, vol. 17, no. 1, pp. 4–10, 2003.
[16]  M. Desmarchelier, Y. Rondenay, G. Fitzgerald, and S. Lair, “Monitoring of the ventilatory status of anesthetized birds of prey by using end-tidal carbon dioxide measured with a microstream capnometer,” Journal of Zoo and Wildlife Medicine, vol. 38, no. 1, pp. 1–6, 2007.
[17]  J. A. Mercado, R. S. Larsen, R. F. Wack, and B. H. Pypendop, “Minimum anesthetic concentration of isoflurane in captive thick-billed parrots (Rhynchopsitta pachyrhyncha),” The American Journal of Veterinary Research, vol. 69, no. 2, pp. 189–194, 2008.
[18]  T. D. Granone, O. N. de Francisco, M. B. Killos, J. E. Quandt, R. E. Mandsager, and L. F. Graham, “Comparison of three different inhalant anesthetic agents (isoflurane, sevoflurane, desflurane) in red-tailed hawks (Buteo jamaicensis),” Veterinary Anaesthesia and Analgesia, vol. 39, no. 1, pp. 29–37, 2012.
[19]  V. V. Paula, D. A. Otsuki, J. O. C. J. Auler, et al., “The effect of premedication with ketamine, alone or with diazepam, on anaesthesia with sevoflurane in parrots (Amazona aestiva),” BMC Veterinary Research, vol. 9, no. 1, article 142, 2013.
[20]  K. A. Phair, R. S. Larsen, R. F. Wack, Y. Shilo-Benjamini, and B. H. Pypendop, “Determination of the minimum anesthetic concentration of sevoflurane in thick-billed parrots (Rhynchopsitta pachyrhyncha),” The American Journal of Veterinary Research, vol. 73, no. 9, pp. 1350–1355, 2012.
[21]  M. Lierz and R. Korbel, “Anesthesia and analgesia in birds,” Journal of Exotic Pet Medicine, vol. 21, no. 1, pp. 44–58, 2012.
[22]  C. J. Sedgwick, “Anaesthesia of caged birds,” in Current Veterinary Therapy VII, R. W. Kirk, Ed., pp. 653–656, WB Saunders, Philadelphia, Pa, USA, 1980.
[23]  T. M. Edling, L. A. Degernes, K. Flammer, and W. A. Horne, “Capnographic monitoring of anesthetized African grey parrots receiving intermittent positive pressure ventilation,” Journal of the American Veterinary Medical Association, vol. 219, no. 12, pp. 1714–1718, 2001.
[24]  S. C. Haskins, “Monitoring the anaesthetized patient,” in Lumb and Jones Veterinary Anesthesia, J. Thurmon, J. W. Tranquilli, and G. J. Benson, Eds., pp. 409–424, Williams & Wilkins, Philadelphia, Pa, USA, 1996.
[25]  J. W. Ludders, J. Rode, and G. S. Mitchell, “Isoflurane anesthesia in Sandhill cranes (Grus canadensis): minimal anesthetic concentration and cardiopulmonary dose-response during spontaneous and controlled breathing,” Anesthesia and Analgesia, vol. 68, no. 4, pp. 511–516, 1989.
[26]  F. Lemoel, S. Govciyan, M. E. Omri, et al., “Improving the validity of peripheral venous blood gas analysis as an estimate of arterial blood gas by correcting the venous values with SvO2,” Journal of Emergency Medicine, vol. 44, no. 3, pp. 709–716, 2013.
[27]  S. E. Rudkin, C. A. Kahn, J. A. Oman et al., “Prospective correlation of arterial versus venous blood gas measurements in trauma patients,” The American Journal of Emergency Medicine, vol. 30, no. 8, pp. 1371–1377, 2012.
[28]  A. M. Kelly, “Review article: can venous blood gas analysis replace arterial in emergency medical care,” Emergency Medicine Australasia, vol. 22, no. 6, pp. 493–498, 2010.
[29]  R. Treger, S. Pirouz, N. Kamangar, and D. Corry, “Agreement between central venous and arterial blood gas measurements in the intensive care unit,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 3, pp. 390–394, 2010.
[30]  N. Kanaya, I. Kobayashi, M. Nakayama, S. Fujita, and A. Namiki, “ATP sparing effect of isoflurane during ischaemia and reperfusion of the canine heart,” The British Journal of Anaesthesia, vol. 74, no. 5, pp. 563–568, 1995.
[31]  J. W. Ludders, G. C. Seaman, and H. N. Erb, “Inhalant anesthetics and inspired oxygen: implications for anesthesia in birds,” Journal of the American Animal Hospital Association, vol. 31, no. 1, pp. 38–41, 1995.
[32]  G. C. Seaman, J. W. Ludders, H. N. Erb, and R. D. Gleed, “Effects of low and high fractions of inspired oxygen on ventilation in ducks anesthetized with isoflurane,” The American Journal of Veterinary Research, vol. 55, no. 3, pp. 395–398, 1994.
[33]  M. Gleeson and V. Molony, “Control of breathing,” in Form and Function of Birds, A. S. King and J. McLelland, Eds., pp. 439–484, Academic Press, New York, NY, USA, 1989.
[34]  G. M. Barnas, F. B. Mather, and M. R. Fedde, “Are avian intrapulmonary CO2 receptors chemically modulated mechanoreceptors or chemoreceptors?” Respiration Physiology, vol. 35, no. 2, pp. 237–243, 1978.
[35]  S. C. Hempleman and R. E. Burger, “Receptive fields of intrapulmonary chemoreceptors in the Pekin duck,” Respiration Physiology, vol. 57, no. 3, pp. 317–330, 1984.
[36]  J. L. Cornick and J. Jensen, “Anesthetic management of ostriches,” Journal of the American Veterinary Medical Association, vol. 200, no. 11, pp. 1661–1666, 1992.
[37]  W. McDonell, “Respiratory system,” in Lumb and Jones Veterinary Anesthesia, J. C. Thurmon, W. J. Tranquilli, and G. J. Benson, Eds., pp. 115–147, Williams & Wilkins, Philadelphia, Pa, USA, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133