J. L. Tillerson, A. D. Cohen, W. M. Caudle, M. J. Zigmond, T. Schallert, and G. W. Miller, “Forced nonuse in unilateral Parkinsonian rats exacerbates injury,” Journal of Neuroscience, vol. 22, no. 15, pp. 6790–6799, 2002.
[2]
J. L. Tillerson, A. D. Cohen, J. Philhower, G. W. Miller, M. J. Zigmond, and T. Schallert, “Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine,” Journal of Neuroscience, vol. 21, no. 12, pp. 4427–4435, 2001.
[3]
M. Hamer and Y. Chida, “Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence,” Psychological Medicine, vol. 39, no. 1, pp. 3–11, 2009.
[4]
E. L. Thacker, H. Chen, A. V. Patel et al., “Recreational physical activity and risk of Parkinson's disease,” Movement Disorders, vol. 23, no. 1, pp. 69–74, 2008.
[5]
Q. Xu, Y. Park, X. Huang et al., “Physical activities and future risk of Parkinson disease,” Neurology, vol. 75, no. 4, pp. 341–348, 2010.
[6]
M. Al-Jarrah, K. Pothakos, L. Novikova et al., “Endurance exercise promotes cardiorespiratory rehabilitation without neurorestoration in the chronic mouse model of Parkinsonism with severe neurodegeneration,” Neuroscience, vol. 149, no. 1, pp. 28–37, 2007.
[7]
M. Mabandla, L. Kellaway, A. S. C. Gibson, and V. A. Russell, “Voluntary running provides neuroprotection in rats after 6-hydroxydopamine injection into the medial forebrain bundle,” Metabolic Brain Disease, vol. 19, no. 1-2, pp. 43–50, 2004.
[8]
M. V. Mabandla and V. A. Russell, “Voluntary exercise reduces the neurotoxic effects of 6-hydroxydopamine in maternally separated rats,” Behavioural Brain Research, vol. 211, no. 1, pp. 16–22, 2010.
[9]
S. J. O'Dell, N. B. Gross, A. N. Fricks, B. D. Casiano, T. B. Nguyen, and J. F. Marshall, “Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection,” Neuroscience, vol. 144, no. 3, pp. 1141–1151, 2007.
[10]
M. C. Yoon, M. S. Shin, T. S. Kim et al., “Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson's rats,” Neuroscience Letters, vol. 423, no. 1, pp. 12–17, 2007.
[11]
M. J. Falvo, B. K. Schilling, and G. M. Earhart, “Parkinson's disease and resistive exercise: rationale, review, and recommendations,” Movement Disorders, vol. 23, no. 1, pp. 1–11, 2008.
[12]
V. A. Goodwin, S. H. Richards, R. S. Taylor, A. H. Taylor, and J. L. Campbell, “The effectiveness of exercise interventions for people with Parkinson's disease: a systematic review and meta-analysis,” Movement Disorders, vol. 23, no. 5, pp. 631–640, 2008.
[13]
S. H. J. Keus, M. Munneke, M. J. Nijkrake, G. Kwakkel, and B. R. Bloem, “Physical therapy in Parkinson's disease: evolution and future challenges,” Movement Disorders, vol. 24, no. 1, pp. 1–14, 2009.
[14]
N. E. Allen, C. G. Canning, C. Sherrington et al., “The effects of an exercise program on fall risk factors in people with Parkinson's disease: a randomized controlled trial,” Movement Disorders, vol. 25, no. 9, pp. 1217–1225, 2010.
[15]
N. E. Allen, C. Sherrington, S. S. Paul, and C. G. Canning, “Balance and falls in Parkinson's disease: a meta-analysis of the effect of exercise and motor training,” Movement Disorders, vol. 26, no. 9, pp. 1605–1615, 2011.
[16]
V. A. Goodwin, S. H. Richards, W. Henley, P. Ewings, A. H. Taylor, and J. L. Campbell, “An exercise intervention to prevent falls in people with Parkinson's disease: a pragmatic randomised controlled trial,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 82, no. 11, pp. 1232–1238, 2011.