M. Caiazzo, M. T. Dell'Anno, E. Dvoretskova et al., “Direct generation of functional dopaminergic neurons from mouse and human fibroblasts,” Nature, vol. 476, no. 7359, pp. 224–227, 2011.
[2]
W. Satake, Y. Nakabayashi, I. Mizuta et al., “Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease,” Nature Genetics, vol. 41, no. 12, pp. 1303–1307, 2009.
[3]
J. Simon-Sanchez, C. Schulte, J. M. Bras, M. Sharma, J. R. Gibbs, et al., “Genome-wide association study reveals genetic risk underlying Parkinson's disease,” Nature Genetics, vol. 41, pp. 1308–1312, 2009.
[4]
G. Bustos, J. Abarca, V. Bustos et al., “NMDA receptors mediate an early up-regulation of brain-derived neurotrophic factor expression in substantia nigra in a rat model of presymptomatic Parkinson's disease,” Journal of Neuroscience Research, vol. 87, no. 10, pp. 2308–2318, 2009.
[5]
R. Ying, H. L. Liang, H. T. Whelan, J. T. Eells, and M. T. Wong-Riley, “Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity,” Brain Research, vol. 1243, pp. 167–173, 2008.
[6]
V. E. Shaw, S. Spana, K. Ashkan et al., “Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment,” Journal of Comparative Neurology, vol. 518, no. 1, pp. 25–40, 2010.
[7]
M. B. Feany and W. W. Bender, “A Drosophila model of Parkinson's disease,” Nature, vol. 404, no. 6776, pp. 394–398, 2000.
[8]
S. Zhu, I. G. Stavrovskaya, M. Drozda et al., “Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice,” Nature, vol. 417, no. 6884, pp. 74–78, 2002.
[9]
Y. Du, Z. Ma, S. Lin et al., “Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14669–14674, 2001.