全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Kinematics Analysis of a Novel Five-Degree-of-Freedom Spatial Parallel Micromanipulator

DOI: 10.1155/2014/806294

Full-Text   Cite this paper   Add to My Lib

Abstract:

A study of the inverse kinematics for a five-degree-of-freedom (DOF) spatial parallel micromanipulator is presented here below. The objective of this paper is the introduction of a structural and geometrical model of a novel five-degree-of-freedom spatial parallel micromanipulator, analysis of the effective and useful workspace of the micromechanism, presentation of the obtained analytical solutions of the microrobot’s inverse kinematics tasks, and verification of its correctness using selected computer programs and computation environments. The mathematical model presented in this paper describes the behaviour of individual elements for the applied 2-DOF novel piezoelectric actuator, resulting from the position and orientation of the microrobot’s moving platform. 1. Introduction Over the past years much attention has been devoted to the analysis of parallel micromanipulators [1, 2]. These mechanisms have a major advantage over serial microrobots, reflected inter alia in their accuracy, repeatability, and speed, with which the desired position can be achieved [3–5]. On the other hand, the parallel manipulators have a relatively smaller workspace, limited by the maximum arms lengths, angle values at the joints, and their dimensions. Moreover, the main difficulty with parallel manipulators (both in micro- and macroscale) is the complexity of controlling their movement. Kinematic structures of various types of parallel mechanisms may contain serial, parallel, or serial-parallel (hybrid) types of linkages, mounted to the platforms by universal joints [6–10]. The desired position and orientation of the moving platform are achieved by combining the linear and angular lengths of the robot’s arms, transformed by their degrees of freedom into three positional and orientational ones for the operating member [11–13]. The problem of inverse kinematics task for spatial parallel manipulators can be defined as finding the linkage’s lengths needed to position the moving platform along a specified geometric path, aligned accordingly with the desired orientation [14–17]. The solution to this problem can sometimes be indeed very complex and less suitable for real-time computing. However, the computation of length for each arm can be carried out independently, which can additionally speed up the process [18]. This procedure is used to guide the moving platform in controlling its movement [16, 19]. Quoted features constitute the greatest importance when it comes to designing and constructing parallel platforms, operating in micro- or nanometric scales [20–23]. Thus far,

References

[1]  J. P. Merlet, Solid Mechanics and It’s Applications: Parallel Robots, Kluwer Academic, Springer, 2000.
[2]  D. Prusak, T. Uhl, and M. Petko, Introduction to the Problem of Microrobotics, vol. 5, Measurements, Automation, Control PAK, Polish Society of Automation Measurements and Robotics POLSPAR, 2004.
[3]  G. Gogu, Structural Synthesis of Parallel Robots, Part 1, Springer, 2008.
[4]  D. Prusak and T. Uhl, “Design and control of a novel type hybrid micromanipulator with piezoelectric actuators and vision feedback system,” in Proceedings of the 12th Congress of theoretical and Applied Mechanics, Adelaide, Australia, August 2008.
[5]  D. Prusak, T. Uhl, and M. Petko, “Parallel microrobots—concept and prototyping,” in Proceedings of the 12th IEEE international conference on Methods and Models in Automation and Robotics, Technical University of Szczecin, Institute of Control Engineering, IEEE, IEEE Robotics & Automation Society, IEEE Control System Society, Miedzyzdroje, Poland, August 2006.
[6]  G. Karpiel and M. Petko, Three-armed parallel manipulator, AGH University of Science and Technology, Krakow, Poland, Polish patent no. PL, 208563 B1, 31. 05. 2011, Int. Cl.: B25J 18/04 (2006. 01).
[7]  G. Karpiel and M. Petko, Triple actuated joint, AGH University of Science and Technology, Krakow, Poland, Polish patent no. PL, 207396 B1, 31. 12. 2010, Int. Cl. F16C 11/00 (2006. 01).
[8]  G. Karpiel, M. Petko, and T. Uhl, Three-arm parallel manipulator, AGH University of Science and Technology, Krakow, Poland, Polish patent no. PL, 203631 B1, 30. 10. 2009, Int. Cl.: B25J 18/00 (2006. 01).
[9]  D. Prusak, M. Petko, and G. Karpiel, Three-armed parallel manipulator, AGH University of Science and Technology, Krakow, Poland, Polish patent no. PL, 210002 B1, 30. 11. 2011, Int. Cl.: B25J 18/04 (2006. 01).
[10]  Y. Yun and Y. Li, “Design and analysis of a novel 6-DOF redundant actuated parallel robot with compliant hinges for high precision positioning,” Nonlinear Dynamics, vol. 61, no. 4, pp. 829–845, 2010.
[11]  J. Huang and Y. Li, “Design and analysis of a completely decoupled compliant parallel XY micro-motion stage,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO '10), pp. 1008–1013, Tianjin, China, December 2010.
[12]  M. Petko and G. Karpiel, “Mechatronic design of parallel manipulators,” in Proceedings of the 3rd IFAC Symposium on Mechatronic Systems, pp. 433–438, Sydney, Australia, September 2004.
[13]  M. Petko, G. Karpiel, D. Prusak, and A. Martowicz, “A new 3-DOF parallel manipulator,” in Proceedings of the 4th International Workshop on Robot Motion and Control (RoMoCo '04), pp. 127–132, June 2004.
[14]  J. A. Carretero, R. P. Podhorodeski, M. A. Nahon, and C. M. Gosselin, “Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator,” Journal of Mechanical Design, Transactions of the ASME, vol. 122, no. 1, pp. 17–24, 2000.
[15]  D. Jakobovi? and L. Budin, “Forvard Kinematics of a Steward Platform Mechanism,” Problem-Solving Environments in Engineering.
[16]  M. Petko, G. Karpiel, D. Prusak, and A. Martowicz, Kinematics of the New Type 3-DOF Parallel Manipulator, vol. 5, Measurements, Automation, Control PAK, Polish Society of Automation Measurements and Robotics POLSPAR, 2004.
[17]  D. Prusak, M. Petko, G. Karpiel, and A. Martowicz, “Calibration of a tripod parallel robot,” in Advancement in Robotics, Control of Robots with Perception of the Environment, Collective Work, K. Tchoń, Ed., pp. 323–332, Transport and Communication Printing House LLC, Warsaw, Poland, 2005.
[18]  K. Gac, G. Karpiel, and M. Petko, “FPGA based hardware accelerator for calculations of the parallel robot inverse kinematics,” in Proceedings of the 17th IEEE International conference on Emerging Technologies & Factory Automation, Krakow, Poland, September2012.
[19]  Z. M. Bi, “Development and control of a 5-axis reconfigurable machine tool,” Journal of Robotics, vol. 2011, Article ID 583072, 9 pages, 2011.
[20]  P. Dario, R. Valleggi, M. C. Carrozza, M. C. Montesi, and M. Cocco, “Microactuators for microrobots: a critical survey,” Journal of Micromechanics and Microengineering, vol. 2, no. 3, pp. 141–157, 1992.
[21]  Y. Li, J. Huang, and H. Tang, “A compliant parallel xy micromotion stage with complete kinematic decoupling,” IEEE Transactions on Automation Science and Engineering, vol. 9, no. 3, 2012.
[22]  T. Uhl, M. Mańka, and D. Prusak, “Mechanisms for micro- and nano-systems,” Mechanics, AGH University of Science and Technology, vol. 27, no. 2, pp. 76–83, 2008.
[23]  T. Uhl and D. Prusak, “Microrobots—construction and testing,” in Proceedings of the 1st National Conference on Nano- and Micromechanics, Engineering Committee of the Polish Academy of Science PAN, Rzeszow University of Technology, Institute of Fundamental Technological Research of Polish Academy of Science, Krasiczyn, Poland, July 2008.
[24]  Alio Industries, “True Nano Precision Motion Systems, Alio Industries,” 2012, http://www.alioindustries.com/.
[25]  G. B. Chung, J. H. Chung, D. G. Choi, B.-J. Yi, S. Y. Han, and S. J. Kim, “Development of a 5-DOF hybrid micro-manipulator and implementation to needle manipulation process in medical applications,” Key Engineering Materials, vol. 326–328, pp. 773–776, 2006.
[26]  C. Clévy, A. Hubert, J. Agnus, and N. Chaillet, “A micromanipulation cell including a tool changer,” Journal of Micromechanics and Microengineering, vol. 15, no. 10, pp. S292–S301, 2005.
[27]  CSEM, “Centre Suisse d'Electronique et Microtechnique SA,” 2012, http://www.csem.ch/.
[28]  D. Chao, G. Zong, and R. Liu, “Design of a 6-DOF compliant manipulator based on serial-parallel architecture,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM '05), pp. 765–770, Monterey, Calif, USA, July 2005.
[29]  N. R. Fazenda Carri?o, Calibration of High-Precision Flexure Parallel Robots, EPFL, Lausanne, Switzerland, 2007.
[30]  J. Hesselbach, A. Raatz, J. Wrege, and S. Soetebier, Design and Analyses of a Macro Parallel Robot with Flexure Hinges for Micro Assembly Tasks, Mechatronics & Robotics, (MechRob), Aachen, Germany, 2004.
[31]  J. Hesselbach, J. Wrege, A. Raatz, and O. Becker, “Aspects on design of high precision parallel robots,” Assembly Automation, vol. 24, no. 1, pp. 49–57, 2004.
[32]  D. Prusak and T. Uhl, “Novel type of hybrid 3-DOF micromanipulator with piezoelectric actuators—mechanical construction and simulations,” in Proceedings of the 4th International Conference on Mechatronic Systems and Materials (MSM '08), Bialystok Technical University, Faculty of Mechanical Engineering, Department of Automatics and Robotics, Bialystok, Poland, July 2008.
[33]  C. Quaglia, E. Buselli, R. J. Webster III, P. Valdastri, A. Menciassi, and P. Dario, “An endoscopic capsule robot: a meso-scale engineering case study,” Journal of Micromechanics and Microengineering, vol. 19, no. 10, Article ID 105007, pp. 1–11, 2009.
[34]  D. Prusak and G. Karpiel, “Prototype of micromanipulator with 5DOF,” in Proceedings of the 2nd National Conference on nano and micro robotics, Krasiczyn, Rzeszow University of Technology Printing House, Rzeszow, Poland, July 2010.
[35]  D. Prusak, G. Karpiel, and T. Uhl, “A novel type of 5 DOF parallel micromanipulator with piezoelectric actuators,” in Proceedings of the 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, June 2011.
[36]  G. Karpiel and D. Prusak, Parallel Robot with 5 Degrees of Freedom, Mechatronic Design: Selected Issues, Collective Work, Edited by Uhl T, AGH University of Science and Technology, Department of Robotics and Mechatronics, Krakow, Poland, 2011.
[37]  Z. Kosiński and D. Prusak, Piezomechatronic Actuator Based on Rotational-Linear Converter, Mechatronic Design: Selected Issues, Collective Work, Edited by Uhl T, AGH University of Science and Technology, Department of Robotics and Mechatronics, Krakow, Poland, 2010.
[38]  D. Prusak and G. Karpiel, “Prototype of piezoelectric microactuator with two degrees-of-freedom,” in Proceedings of the 2nd National Conference on nano and micro robotics, Krasiczyn, Rzeszow University of Technology Printing House, Rzeszow, Poland, July 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133